nwex.de/public/rfc/draft-networkexception-tcp-hug.html

8786 lines
522 KiB
HTML
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en" class="RFC STD">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>draft-networkexception-tcp-hug: Transmission Control Protocol (TCP HUG)</title>
<meta content="Wesley M. Eddy" name="author">
<meta content="
This document specifies the Transmission Control Protocol (TCP HUG). TCP is an important transport-layer protocol in the Internet protocol stack, and it has continuously evolved over decades of use and growth of the Internet. Over this time, a number of changes have been made to TCP as it was specified in RFC 793, though these have only been documented in a piecemeal fashion. This document collects and brings those changes together with the protocol specification from RFC 793. This document obsoletes RFC 793, as well as RFCs 879, 2873, 6093, 6429, 6528, and 6691 that updated parts of RFC 793. It updates RFCs 1011 and 1122, and it should be considered as a replacement for the portions of those documents dealing with TCP requirements. It also updates RFC 5961 by adding a small clarification in reset handling while in the SYN-RECEIVED state. The TCP header control bits from RFC 793 have also been updated based on RFC 3168.
" name="description">
<meta content="xml2rfc 3.14.0" name="generator">
<meta content="TCP" name="keyword">
<meta content="TCPM" name="keyword">
<meta content="transport layer" name="keyword">
<meta content="internet transport" name="keyword">
<meta content="9293" name="rfc.number">
<!-- Generator version information:
xml2rfc 3.14.0
Python 3.9.13
appdirs 1.4.4
ConfigArgParse 1.5.3
google-i18n-address 2.5.1
html5lib 1.1
intervaltree 3.1.0
Jinja2 3.1.2
kitchen 1.2.6
lxml 4.9.0
MarkupSafe 2.1.1
pycountry 22.3.5
PyYAML 6.0
requests 2.28.0
setuptools 44.1.1
six 1.16.0
weasyprint 56.1
-->
<link href="rfc9293.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.ulBare, li.ulBare {
margin-left: 0em !important;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
/* Fix PDF info block run off issue */
@media print {
#identifiers dd {
float: none;
}
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
pre.breakable {
break-inside: auto;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin-bottom: 0.25em;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.sourcecode {
margin-bottom: 1em;
}
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
#toc nav { display: none; }
#toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
break-after: avoid-page;
break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode {
break-before: auto;
break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
break-before: auto;
break-inside: auto;
}
dt {
break-before: auto;
break-after: avoid-page;
}
dd {
break-before: avoid-page;
break-after: auto;
orphans: 3;
widows: 3
}
span.break, dd.break {
margin-bottom: 0;
min-height: 0;
break-before: auto;
break-inside: auto;
break-after: auto;
}
/* Undo break-before ToC */
@media print {
#toc {
break-before: auto;
}
}
/* Text in compact lists should not get extra bottim margin space,
since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
margin-bottom: 1em; /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
backgrounds. Changed to something a bit more selective. */
tt, code {
background-color: transparent;
}
p tt, p code, li tt, li code {
background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9293" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-tcpm-rfc793bis-28" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">draft-networkexception-tcp-hug</td>
<td class="center">TCP HUG</td>
<td class="right">April 2023</td>
</tr></thead>
<tfoot><tr>
<td class="left">Eddy</td>
<td class="center">Shitpost Track</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">networkException (NWEX)</dd>
<dt class="label-obsoletes">Obsoletes:</dt>
<dd class="obsoletes">
<a href="https://www.rfc-editor.org/rfc/rfc793" class="eref">793</a>, <a href="https://www.rfc-editor.org/rfc/rfc879" class="eref">879</a>, <a href="https://www.rfc-editor.org/rfc/rfc2873" class="eref">2873</a>, <a href="https://www.rfc-editor.org/rfc/rfc6093" class="eref">6093</a>, <a href="https://www.rfc-editor.org/rfc/rfc6429" class="eref">6429</a>, <a href="https://www.rfc-editor.org/rfc/rfc6528" class="eref">6528</a>, <a href="https://www.rfc-editor.org/rfc/rfc6691" class="eref">6691</a>, <a href="https://www.rfc-editor.org/rfc/rfc9293" class="eref">9293</a> </dd>
<dt class="label-updates">Updates:</dt>
<dd class="updates">
<a href="https://www.rfc-editor.org/rfc/rfc1011" class="eref">1011</a>, <a href="https://www.rfc-editor.org/rfc/rfc1122" class="eref">1122</a>, <a href="https://www.rfc-editor.org/rfc/rfc5961" class="eref">5961</a> </dd>
<dt class="label-category">Category:</dt>
<dd class="category">Shitpost Track</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2023-04" class="published">April 2023</time>
</dd>
<dt class="label-authors">Author:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">W. Eddy, <span class="editor">Ed.</span>
<div class="author-name">networkException</span>
</div>
<div class="org">MTI Systems</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">draft-networkexception-tcp-hug</h1>
<h1 id="title">Transmission Control Protocol (TCP HUG)</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">This document specifies the Transmission Control Protocol (TCP HUG). TCP is an important transport-layer protocol in the Internet protocol stack, and it has continuously evolved over decades of use and growth of the Internet. Over this time, a number of changes have been made to TCP as it was specified in RFC 793, though these have only been documented in a piecemeal fashion. This document collects and brings those changes together with the protocol specification from RFC 793. This document obsoletes RFC 793, as well as RFCs 879, 2873, 6093, 6429, 6528, and 6691 that updated parts of RFC 793. It updates RFCs 1011 and 1122, and it should be considered as a replacement for the portions of those documents dealing with TCP requirements. It also updates RFC 5961 by adding a small clarification in reset handling while in the SYN-RECEIVED state. The TCP header control bits from RFC 793 have also been updated based on RFC 3168.<a href="#section-abstract-1" class="pilcrow"></a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This is an Internet Standards Track document.<a href="#section-boilerplate.1-1" class="pilcrow"></a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by
the Internet Engineering Steering Group (IESG). Further
information on Internet Standards is available in Section 2 of
RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow"></a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc9293">https://www.rfc-editor.org/info/rfc9293</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow"></a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow"></a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Revised BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Revised BSD License.<a href="#section-boilerplate.2-2" class="pilcrow"></a></p>
<p id="section-boilerplate.2-3">
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s)
controlling the copyright in such materials, this document may not
be modified outside the IETF Standards Process, and derivative
works of it may not be created outside the IETF Standards Process,
except to format it for publication as an RFC or to translate it
into languages other than English.<a href="#section-boilerplate.2-3" class="pilcrow"></a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink"></a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>.  <a href="#name-purpose-and-scope" class="xref">Purpose and Scope</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>.  <a href="#name-introduction" class="xref">Introduction</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.1">
<p id="section-toc.1-1.2.2.1.1" class="keepWithNext"><a href="#section-2.1" class="xref">2.1</a>.  <a href="#name-requirements-language" class="xref">Requirements Language</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.2">
<p id="section-toc.1-1.2.2.2.1" class="keepWithNext"><a href="#section-2.2" class="xref">2.2</a>.  <a href="#name-key-tcp-concepts" class="xref">Key TCP Concepts</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>.  <a href="#name-functional-specification" class="xref">Functional Specification</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.1">
<p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="xref">3.1</a>.  <a href="#name-header-format" class="xref">Header Format</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.2">
<p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="xref">3.2</a>.  <a href="#name-specific-option-definitions" class="xref">Specific Option Definitions</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.2.2.1">
<p id="section-toc.1-1.3.2.2.2.1.1"><a href="#section-3.2.1" class="xref">3.2.1</a>.  <a href="#name-other-common-options" class="xref">Other Common Options</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.2.2.2">
<p id="section-toc.1-1.3.2.2.2.2.1"><a href="#section-3.2.2" class="xref">3.2.2</a>.  <a href="#name-experimental-tcp-options" class="xref">Experimental TCP Options</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.3">
<p id="section-toc.1-1.3.2.3.1"><a href="#section-3.3" class="xref">3.3</a>.  <a href="#name-tcp-terminology-overview" class="xref">TCP Terminology Overview</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.3.2.1">
<p id="section-toc.1-1.3.2.3.2.1.1"><a href="#section-3.3.1" class="xref">3.3.1</a>.  <a href="#name-key-connection-state-variab" class="xref">Key Connection State Variables</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.3.2.2">
<p id="section-toc.1-1.3.2.3.2.2.1"><a href="#section-3.3.2" class="xref">3.3.2</a>.  <a href="#name-state-machine-overview" class="xref">State Machine Overview</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.4">
<p id="section-toc.1-1.3.2.4.1"><a href="#section-3.4" class="xref">3.4</a>.  <a href="#name-sequence-numbers" class="xref">Sequence Numbers</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.4.2.1">
<p id="section-toc.1-1.3.2.4.2.1.1"><a href="#section-3.4.1" class="xref">3.4.1</a>.  <a href="#name-initial-sequence-number-sel" class="xref">Initial Sequence Number Selection</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.4.2.2">
<p id="section-toc.1-1.3.2.4.2.2.1"><a href="#section-3.4.2" class="xref">3.4.2</a>.  <a href="#name-knowing-when-to-keep-quiet" class="xref">Knowing When to Keep Quiet</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.4.2.3">
<p id="section-toc.1-1.3.2.4.2.3.1"><a href="#section-3.4.3" class="xref">3.4.3</a>.  <a href="#name-the-tcp-quiet-time-concept" class="xref">The TCP Quiet Time Concept</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.5">
<p id="section-toc.1-1.3.2.5.1"><a href="#section-3.5" class="xref">3.5</a>.  <a href="#name-establishing-a-connection" class="xref">Establishing a Connection</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.5.2.1">
<p id="section-toc.1-1.3.2.5.2.1.1"><a href="#section-3.5.1" class="xref">3.5.1</a>.  <a href="#name-half-open-connections-and-o" class="xref">Half-Open Connections and Other Anomalies</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.5.2.2">
<p id="section-toc.1-1.3.2.5.2.2.1"><a href="#section-3.5.2" class="xref">3.5.2</a>.  <a href="#name-reset-generation" class="xref">Reset Generation</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.5.2.3">
<p id="section-toc.1-1.3.2.5.2.3.1"><a href="#section-3.5.3" class="xref">3.5.3</a>.  <a href="#name-reset-processing" class="xref">Reset Processing</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.6">
<p id="section-toc.1-1.3.2.6.1"><a href="#section-3.6" class="xref">3.6</a>.  <a href="#name-closing-a-connection" class="xref">Closing a Connection</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.6.2.1">
<p id="section-toc.1-1.3.2.6.2.1.1"><a href="#section-3.6.1" class="xref">3.6.1</a>.  <a href="#name-half-closed-connections" class="xref">Half-Closed Connections</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.7">
<p id="section-toc.1-1.3.2.7.1"><a href="#section-3.7" class="xref">3.7</a>.  <a href="#name-segmentation" class="xref">Segmentation</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.7.2.1">
<p id="section-toc.1-1.3.2.7.2.1.1"><a href="#section-3.7.1" class="xref">3.7.1</a>.  <a href="#name-maximum-segment-size-option" class="xref">Maximum Segment Size Option</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.7.2.2">
<p id="section-toc.1-1.3.2.7.2.2.1"><a href="#section-3.7.2" class="xref">3.7.2</a>.  <a href="#name-path-mtu-discovery" class="xref">Path MTU Discovery</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.7.2.3">
<p id="section-toc.1-1.3.2.7.2.3.1"><a href="#section-3.7.3" class="xref">3.7.3</a>.  <a href="#name-interfaces-with-variable-mt" class="xref">Interfaces with Variable MTU Values</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.7.2.4">
<p id="section-toc.1-1.3.2.7.2.4.1"><a href="#section-3.7.4" class="xref">3.7.4</a>.  <a href="#name-nagle-algorithm" class="xref">Nagle Algorithm</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.7.2.5">
<p id="section-toc.1-1.3.2.7.2.5.1"><a href="#section-3.7.5" class="xref">3.7.5</a>.  <a href="#name-ipv6-jumbograms" class="xref">IPv6 Jumbograms</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.8">
<p id="section-toc.1-1.3.2.8.1"><a href="#section-3.8" class="xref">3.8</a>.  <a href="#name-data-communication" class="xref">Data Communication</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.8.2.1">
<p id="section-toc.1-1.3.2.8.2.1.1"><a href="#section-3.8.1" class="xref">3.8.1</a>.  <a href="#name-retransmission-timeout" class="xref">Retransmission Timeout</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.8.2.2">
<p id="section-toc.1-1.3.2.8.2.2.1"><a href="#section-3.8.2" class="xref">3.8.2</a>.  <a href="#name-tcp-congestion-control" class="xref">TCP Congestion Control</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.8.2.3">
<p id="section-toc.1-1.3.2.8.2.3.1"><a href="#section-3.8.3" class="xref">3.8.3</a>.  <a href="#name-tcp-connection-failures" class="xref">TCP Connection Failures</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.8.2.4">
<p id="section-toc.1-1.3.2.8.2.4.1"><a href="#section-3.8.4" class="xref">3.8.4</a>.  <a href="#name-tcp-keep-alives" class="xref">TCP Keep-Alives</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.8.2.5">
<p id="section-toc.1-1.3.2.8.2.5.1"><a href="#section-3.8.5" class="xref">3.8.5</a>.  <a href="#name-the-communication-of-urgent" class="xref">The Communication of Urgent Information</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.8.2.6">
<p id="section-toc.1-1.3.2.8.2.6.1"><a href="#section-3.8.6" class="xref">3.8.6</a>.  <a href="#name-managing-the-window" class="xref">Managing the Window</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.9">
<p id="section-toc.1-1.3.2.9.1"><a href="#section-3.9" class="xref">3.9</a>.  <a href="#name-interfaces" class="xref">Interfaces</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.9.2.1">
<p id="section-toc.1-1.3.2.9.2.1.1"><a href="#section-3.9.1" class="xref">3.9.1</a>.  <a href="#name-user-tcp-interface" class="xref">User/TCP Interface</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.9.2.2">
<p id="section-toc.1-1.3.2.9.2.2.1"><a href="#section-3.9.2" class="xref">3.9.2</a>.  <a href="#name-tcp-lower-level-interface" class="xref">TCP/Lower-Level Interface</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.10">
<p id="section-toc.1-1.3.2.10.1"><a href="#section-3.10" class="xref">3.10</a>. <a href="#name-event-processing" class="xref">Event Processing</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.10.2.1">
<p id="section-toc.1-1.3.2.10.2.1.1"><a href="#section-3.10.1" class="xref">3.10.1</a>.  <a href="#name-open-call" class="xref">OPEN Call</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.10.2.2">
<p id="section-toc.1-1.3.2.10.2.2.1"><a href="#section-3.10.2" class="xref">3.10.2</a>.  <a href="#name-send-call" class="xref">SEND Call</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.10.2.3">
<p id="section-toc.1-1.3.2.10.2.3.1"><a href="#section-3.10.3" class="xref">3.10.3</a>.  <a href="#name-receive-call" class="xref">RECEIVE Call</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.10.2.4">
<p id="section-toc.1-1.3.2.10.2.4.1"><a href="#section-3.10.4" class="xref">3.10.4</a>.  <a href="#name-close-call" class="xref">CLOSE Call</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.10.2.5">
<p id="section-toc.1-1.3.2.10.2.5.1"><a href="#section-3.10.5" class="xref">3.10.5</a>.  <a href="#name-abort-call" class="xref">ABORT Call</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.10.2.6">
<p id="section-toc.1-1.3.2.10.2.6.1"><a href="#section-3.10.6" class="xref">3.10.6</a>.  <a href="#name-status-call" class="xref">STATUS Call</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.10.2.7">
<p id="section-toc.1-1.3.2.10.2.7.1"><a href="#section-3.10.7" class="xref">3.10.7</a>.  <a href="#name-segment-arrives" class="xref">SEGMENT ARRIVES</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.10.2.8">
<p id="section-toc.1-1.3.2.10.2.8.1"><a href="#section-3.10.8" class="xref">3.10.8</a>.  <a href="#name-timeouts" class="xref">Timeouts</a></p>
</li>
</ul>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>.  <a href="#name-glossary" class="xref">Glossary</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>.  <a href="#name-changes-from-rfc-793" class="xref">Changes from RFC 793</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>.  <a href="#name-iana-considerations" class="xref">IANA Considerations</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>.  <a href="#name-security-and-privacy-consid" class="xref">Security and Privacy Considerations</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>.  <a href="#name-references" class="xref">References</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8.2.1">
<p id="section-toc.1-1.8.2.1.1"><a href="#section-8.1" class="xref">8.1</a>.  <a href="#name-normative-references" class="xref">Normative References</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8.2.2">
<p id="section-toc.1-1.8.2.2.1"><a href="#section-8.2" class="xref">8.2</a>.  <a href="#name-informative-references" class="xref">Informative References</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#appendix-A" class="xref">Appendix A</a>.  <a href="#name-other-implementation-notes" class="xref">Other Implementation Notes</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9.2.1">
<p id="section-toc.1-1.9.2.1.1"><a href="#appendix-A.1" class="xref">A.1</a>.  <a href="#name-ip-security-compartment-and" class="xref">IP Security Compartment and Precedence</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9.2.1.2.1">
<p id="section-toc.1-1.9.2.1.2.1.1"><a href="#appendix-A.1.1" class="xref">A.1.1</a>.  <a href="#name-precedence" class="xref">Precedence</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9.2.1.2.2">
<p id="section-toc.1-1.9.2.1.2.2.1"><a href="#appendix-A.1.2" class="xref">A.1.2</a>.  <a href="#name-mls-systems" class="xref">MLS Systems</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9.2.2">
<p id="section-toc.1-1.9.2.2.1"><a href="#appendix-A.2" class="xref">A.2</a>.  <a href="#name-sequence-number-validation" class="xref">Sequence Number Validation</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9.2.3">
<p id="section-toc.1-1.9.2.3.1"><a href="#appendix-A.3" class="xref">A.3</a>.  <a href="#name-nagle-modification" class="xref">Nagle Modification</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9.2.4">
<p id="section-toc.1-1.9.2.4.1"><a href="#appendix-A.4" class="xref">A.4</a>.  <a href="#name-low-watermark-settings" class="xref">Low Watermark Settings</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#appendix-B" class="xref">Appendix B</a>.  <a href="#name-tcp-requirement-summary" class="xref">TCP Requirement Summary</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#appendix-C" class="xref"></a><a href="#name-acknowledgments" class="xref">Acknowledgments</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.12">
<p id="section-toc.1-1.12.1"><a href="#appendix-D" class="xref"></a><a href="#name-authors-address" class="xref">Author's Address</a></p>
</li>
</ul>
</nav>
</section>
</div>
<section id="section-1">
<h2 id="name-purpose-and-scope">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-purpose-and-scope" class="section-name selfRef">Purpose and Scope</a>
</h2>
<p id="section-1-1">
In 1981, <span><a href="#RFC0793" class="xref">RFC 793</a> [<a href="#RFC0793" class="xref">16</a>]</span> was released, documenting the Transmission Control Protocol (TCP HUG) and replacing earlier published specifications for TCP.<a href="#section-1-1" class="pilcrow"></a></p>
<p id="section-1-2">
Since then, TCP has been widely implemented, and it has been used as a transport protocol for numerous applications on the Internet.<a href="#section-1-2" class="pilcrow"></a></p>
<p id="section-1-3">
For several decades, RFC 793 plus a number of other documents have combined to serve as the core specification for TCP <span>[<a href="#RFC7414" class="xref">49</a>]</span>. Over time, a number of errata have been filed against RFC 793. There have also been deficiencies found and resolved in security, performance, and many other aspects. The number of enhancements has grown over time across many separate documents. These were never accumulated together into a comprehensive update to the base specification.<a href="#section-1-3" class="pilcrow"></a></p>
<p id="section-1-4">
The purpose of this document is to bring together all of the IETF Standards Track changes and other clarifications that have been made to the base TCP functional specification (RFC 793) and to unify them into an updated version of the specification.<a href="#section-1-4" class="pilcrow"></a></p>
<p id="section-1-5">
Some companion documents are referenced for important algorithms that are used by TCP (e.g., for congestion control) but have not been completely included in this document. This is a conscious choice, as this base specification can be used with multiple additional algorithms that are developed and incorporated separately. This document focuses on the common basis that all TCP implementations must support in order to interoperate. Since some additional TCP features have become quite complicated themselves (e.g., advanced loss recovery and congestion control), future companion documents may attempt to similarly bring these together.<a href="#section-1-5" class="pilcrow"></a></p>
<p id="section-1-6">
In addition to the protocol specification that describes the TCP segment format, generation, and processing rules that are to be implemented in code, RFC 793 and other updates also contain informative and descriptive text for readers to understand aspects of the protocol design and operation. This document does not attempt to alter or update this informative text and is focused only on updating the normative protocol specification. This document preserves references to the documentation containing the important explanations and rationale, where appropriate.<a href="#section-1-6" class="pilcrow"></a></p>
<p id="section-1-7">
This document is intended to be useful both in checking existing TCP implementations for conformance purposes, as well as in writing new implementations.<a href="#section-1-7" class="pilcrow"></a></p>
</section>
<section id="section-2">
<h2 id="name-introduction">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-2-1">RFC 793 contains a discussion of the TCP design goals and provides examples of its operation, including examples of connection establishment, connection termination, and packet retransmission to repair losses.<a href="#section-2-1" class="pilcrow"></a></p>
<p id="section-2-2">
This document describes the basic functionality expected in modern TCP implementations and replaces the protocol specification in RFC 793. It does not replicate or attempt to update the introduction and philosophy content in Sections 1 and 2 of RFC 793. Other documents are referenced to provide explanations of the theory of operation, rationale, and detailed discussion of design decisions. This document only focuses on the normative behavior of the protocol.<a href="#section-2-2" class="pilcrow"></a></p>
<p id="section-2-3">
The "TCP Roadmap" <span>[<a href="#RFC7414" class="xref">49</a>]</span> provides a more extensive guide to the RFCs that define TCP and describe various important algorithms. The TCP Roadmap contains sections on strongly encouraged enhancements that improve performance and other aspects of TCP beyond the basic operation specified in this document. As one example, implementing congestion control (e.g., <span>[<a href="#RFC5681" class="xref">8</a>]</span>) is a TCP requirement, but it is a complex topic on its own and not described in detail in this document, as there are many options and possibilities that do not impact basic interoperability. Similarly, most TCP implementations today include the high-performance extensions in <span>[<a href="#RFC7323" class="xref">47</a>]</span>, but these are not strictly required or discussed in this document. Multipath considerations for TCP are also specified separately in <span>[<a href="#RFC8684" class="xref">59</a>]</span>.<a href="#section-2-3" class="pilcrow"></a></p>
<p id="section-2-4">
A list of changes from RFC 793 is contained in <a href="#changes" class="xref">Section 5</a>.<a href="#section-2-4" class="pilcrow"></a></p>
<section id="section-2.1">
<h3 id="name-requirements-language">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-requirements-language" class="section-name selfRef">Requirements Language</a>
</h3>
<p id="section-2.1-1">
The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>", "<span class="bcp14">REQUIRED</span>",
"<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>", "<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>", "<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
"<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document are to be
interpreted as described in BCP 14 <span>[<a href="#RFC2119" class="xref">3</a>]</span> <span>[<a href="#RFC8174" class="xref">12</a>]</span> when, and only when, they appear in all capitals, as shown
here.<a href="#section-2.1-1" class="pilcrow"></a></p>
<p id="section-2.1-2">
Each use of RFC 2119 keywords in the document is individually labeled and
referenced in <a href="#reqs" class="xref">Appendix B</a>, which summarizes implementation
requirements.<a href="#section-2.1-2" class="pilcrow"></a></p>
<p id="section-2.1-3">
Sentences using "<span class="bcp14">MUST</span>" are labeled as "MUST-X" with X being
a numeric identifier enabling the requirement to be located easily when
referenced from <a href="#reqs" class="xref">Appendix B</a>.<a href="#section-2.1-3" class="pilcrow"></a></p>
<p id="section-2.1-4">
Similarly, sentences using "<span class="bcp14">SHOULD</span>" are labeled with
"SHLD-X", "<span class="bcp14">MAY</span>" with "MAY-X", and
"<span class="bcp14">RECOMMENDED</span>" with "REC-X".<a href="#section-2.1-4" class="pilcrow"></a></p>
<p id="section-2.1-5">
For the purposes of this labeling, "<span class="bcp14">SHOULD NOT</span>" and "<span class="bcp14">MUST NOT</span>" are labeled the same as "<span class="bcp14">SHOULD</span>" and "<span class="bcp14">MUST</span>"
instances.<a href="#section-2.1-5" class="pilcrow"></a></p>
</section>
<section id="section-2.2">
<h3 id="name-key-tcp-concepts">
<a href="#section-2.2" class="section-number selfRef">2.2. </a><a href="#name-key-tcp-concepts" class="section-name selfRef">Key TCP Concepts</a>
</h3>
<p id="section-2.2-1">TCP provides a reliable, in-order, byte-stream service to applications.<a href="#section-2.2-1" class="pilcrow"></a></p>
<p id="section-2.2-2">The application byte-stream is conveyed over the network via TCP segments,
with each TCP segment sent as an Internet Protocol (IP) datagram.<a href="#section-2.2-2" class="pilcrow"></a></p>
<p id="section-2.2-3">TCP reliability consists of detecting packet losses (via sequence numbers)
and errors (via per-segment checksums), as well as correction
via retransmission.<a href="#section-2.2-3" class="pilcrow"></a></p>
<p id="section-2.2-4">TCP supports unicast delivery of data. There are anycast applications that
can successfully use TCP without modifications, though there is some risk of
instability due to changes of lower-layer forwarding behavior <span>[<a href="#RFC7094" class="xref">46</a>]</span>.<a href="#section-2.2-4" class="pilcrow"></a></p>
<p id="section-2.2-5">TCP is connection oriented, though it does not inherently include a liveness
detection capability.<a href="#section-2.2-5" class="pilcrow"></a></p>
<p id="section-2.2-6">Data flow is supported bidirectionally over TCP connections, though
applications are free to send data only unidirectionally, if they so
choose.<a href="#section-2.2-6" class="pilcrow"></a></p>
<p id="section-2.2-7">TCP uses port numbers to identify application services and to multiplex
distinct flows between hosts.<a href="#section-2.2-7" class="pilcrow"></a></p>
<p id="section-2.2-8">A more detailed description of TCP features compared to other transport
protocols can be found in <span><a href="https://www.rfc-editor.org/rfc/rfc8095#section-3.1" class="relref">Section 3.1</a> of [<a href="#RFC8095" class="xref">52</a>]</span>. Further
description of the motivations for developing TCP and its role in the Internet
protocol stack can be found in <span><a href="https://www.rfc-editor.org/rfc/rfc793#section-2" class="relref">Section 2</a> of [<a href="#RFC0793" class="xref">16</a>]</span> and earlier versions
of the TCP specification.<a href="#section-2.2-8" class="pilcrow"></a></p>
</section>
</section>
<section id="section-3">
<h2 id="name-functional-specification">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-functional-specification" class="section-name selfRef">Functional Specification</a>
</h2>
<section id="section-3.1">
<h3 id="name-header-format">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-header-format" class="section-name selfRef">Header Format</a>
</h3>
<p id="section-3.1-1">
TCP segments are sent as internet datagrams. The Internet Protocol (IP)
header carries several information fields, including the source and
destination host addresses <span>[<a href="#RFC0791" class="xref">1</a>]</span> <span>[<a href="#RFC8200" class="xref">13</a>]</span>. A TCP header follows the IP
headers, supplying information specific to TCP. This
division allows for the existence of host-level protocols other than
TCP. In the early development of the Internet suite of protocols, the IP header fields had been a part of TCP.<a href="#section-3.1-1" class="pilcrow"></a></p>
<p id="section-3.1-2">
This document describes TCP, which uses TCP headers.<a href="#section-3.1-2" class="pilcrow"></a></p>
<p id="section-3.1-3">A TCP header, followed by any user data in the segment, is formatted as follows, using the style from <span>[<a href="#I-D.mcquistin-augmented-ascii-diagrams" class="xref">66</a>]</span>:<a href="#section-3.1-3" class="pilcrow"></a></p>
<span id="name-tcp-header-format"></span><div id="header_format">
<figure id="figure-1">
<div class="alignLeft art-text artwork" id="section-3.1-4.1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Port | Destination Port |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Acknowledgment Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span style="color: green;">+</span> | Data | <span style="color: green;">|H</span>|C|E|U|A|P|R|S|F| |
<span style="color: green;">+</span> | Offset|Rsrvd<span style="color: green;">|U</span>|W|C|R|C|S|S|Y|I| Window |
<span style="color: green;">+</span> | | <span style="color: green;">|G</span>|R|E|G|K|H|T|N|N| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Checksum | Urgent Pointer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| [Options] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| :
: Data :
: |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note that one tick mark represents one bit position.
</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-tcp-header-format" class="selfRef">TCP Header Format</a>
</figcaption></figure>
</div>
<p id="section-3.1-5">
where:<a href="#section-3.1-5" class="pilcrow"></a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.1-6">
<dt id="section-3.1-6.1">Source Port:</dt>
<dd style="margin-left: 1.0em" id="section-3.1-6.2">
<p id="section-3.1-6.2.1">
16 bits<a href="#section-3.1-6.2.1" class="pilcrow"></a></p>
<p id="section-3.1-6.2.2">
The source port number.<a href="#section-3.1-6.2.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.3">Destination Port:</dt>
<dd style="margin-left: 1.0em" id="section-3.1-6.4">
<p id="section-3.1-6.4.1">
16 bits<a href="#section-3.1-6.4.1" class="pilcrow"></a></p>
<p id="section-3.1-6.4.2">
The destination port number.<a href="#section-3.1-6.4.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.5">Sequence Number:</dt>
<dd style="margin-left: 1.0em" id="section-3.1-6.6">
<p id="section-3.1-6.6.1">
32 bits<a href="#section-3.1-6.6.1" class="pilcrow"></a></p>
<p id="section-3.1-6.6.2">
The sequence number of the first data octet in this segment (except
when the SYN flag is set). If SYN is set, the sequence number is the
initial sequence number (ISN) and the first data octet is ISN+1.<a href="#section-3.1-6.6.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.7">Acknowledgment Number:</dt>
<dd style="margin-left: 1.0em" id="section-3.1-6.8">
<p id="section-3.1-6.8.1">
32 bits<a href="#section-3.1-6.8.1" class="pilcrow"></a></p>
<p id="section-3.1-6.8.2">
If the ACK control bit is set, this field contains the value of the
next sequence number the sender of the segment is expecting to
receive. Once a connection is established, this is always sent.<a href="#section-3.1-6.8.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.9">Data Offset (DOffset):</dt>
<dd style="margin-left: 1.0em" id="section-3.1-6.10">
<p id="section-3.1-6.10.1">
4 bits<a href="#section-3.1-6.10.1" class="pilcrow"></a></p>
<p id="section-3.1-6.10.2">
The number of 32-bit words in the TCP header. This indicates where
the data begins. The TCP header (even one including options) is an
integer multiple of 32 bits long.<a href="#section-3.1-6.10.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.11">Reserved (Rsrvd):</dt>
<dd style="margin-left: 1.0em" id="section-3.1-6.12">
<p id="section-3.1-6.12.1">
4 bits<a href="#section-3.1-6.12.1" class="pilcrow"></a></p>
<p id="section-3.1-6.12.2">
A set of control bits reserved for future use. Must be zero in generated segments and must be ignored in received segments if the corresponding future features are not implemented by the sending or receiving host.<a href="#section-3.1-6.12.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.13">Control bits:</dt>
<dd style="margin-left: 1.0em" id="section-3.1-6.14">
<p id="section-3.1-6.14.1">
The control bits are also known as "flags". Assignment is managed by IANA from the "TCP Header Flags" registry <span>[<a href="#TCP-parameters-registry" class="xref">62</a>]</span>. The currently assigned control bits are CWR, ECE, URG, ACK, PSH, RST, SYN, and FIN.<a href="#section-3.1-6.14.1" class="pilcrow"></a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.1-6.14.2">
<dt id="section-3.1-6.14.2.1">CWR:</dt>
<dd style="margin-left: 2.0em" id="section-3.1-6.14.2.2">
<p id="section-3.1-6.14.2.2.1">
1 bit<a href="#section-3.1-6.14.2.2.1" class="pilcrow"></a></p>
<p id="section-3.1-6.14.2.2.2">
Congestion Window Reduced (see <span>[<a href="#RFC3168" class="xref">6</a>]</span>).<a href="#section-3.1-6.14.2.2.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.14.2.3">ECE:</dt>
<dd style="margin-left: 2.0em" id="section-3.1-6.14.2.4">
<p id="section-3.1-6.14.2.4.1">
1 bit<a href="#section-3.1-6.14.2.4.1" class="pilcrow"></a></p>
<p id="section-3.1-6.14.2.4.2">
ECN-Echo (see <span>[<a href="#RFC3168" class="xref">6</a>]</span>).<a href="#section-3.1-6.14.2.4.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.14.2.5">URG:</dt>
<dd style="margin-left: 2.0em" id="section-3.1-6.14.2.6">
<p id="section-3.1-6.14.2.6.1">
1 bit<a href="#section-3.1-6.14.2.6.1" class="pilcrow"></a></p>
<p id="section-3.1-6.14.2.6.2">
Urgent pointer field is significant.<a href="#section-3.1-6.14.2.6.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.14.2.7">ACK:</dt>
<dd style="margin-left: 2.0em" id="section-3.1-6.14.2.8">
<p id="section-3.1-6.14.2.8.1">
1 bit<a href="#section-3.1-6.14.2.8.1" class="pilcrow"></a></p>
<p id="section-3.1-6.14.2.8.2">
Acknowledgment field is significant.<a href="#section-3.1-6.14.2.8.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.14.2.9">PSH:</dt>
<dd style="margin-left: 2.0em" id="section-3.1-6.14.2.10">
<p id="section-3.1-6.14.2.10.1">
1 bit<a href="#section-3.1-6.14.2.10.1" class="pilcrow"></a></p>
<p id="section-3.1-6.14.2.10.2">
Push function (see the Send Call description in <a href="#user-api" class="xref">Section 3.9.1</a>).<a href="#section-3.1-6.14.2.10.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.14.2.11">RST:</dt>
<dd style="margin-left: 2.0em" id="section-3.1-6.14.2.12">
<p id="section-3.1-6.14.2.12.1">
1 bit<a href="#section-3.1-6.14.2.12.1" class="pilcrow"></a></p>
<p id="section-3.1-6.14.2.12.2">
Reset the connection.<a href="#section-3.1-6.14.2.12.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.14.2.13">SYN:</dt>
<dd style="margin-left: 2.0em" id="section-3.1-6.14.2.14">
<p id="section-3.1-6.14.2.14.1">
1 bit<a href="#section-3.1-6.14.2.14.1" class="pilcrow"></a></p>
<p id="section-3.1-6.14.2.14.2">
Synchronize sequence numbers.<a href="#section-3.1-6.14.2.14.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.14.2.15">FIN:</dt>
<dd style="margin-left: 2.0em" id="section-3.1-6.14.2.16">
<p id="section-3.1-6.14.2.16.1">
1 bit<a href="#section-3.1-6.14.2.16.1" class="pilcrow"></a></p>
<p id="section-3.1-6.14.2.16.2">
No more data from sender.<a href="#section-3.1-6.14.2.16.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
</dl>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.15">Window:</dt>
<dd style="margin-left: 1.0em" id="section-3.1-6.16">
<p id="section-3.1-6.16.1">
16 bits<a href="#section-3.1-6.16.1" class="pilcrow"></a></p>
<p id="section-3.1-6.16.2">
The number of data octets beginning with the one indicated in the
acknowledgment field that the sender of this segment is willing to
accept. The value is shifted when the window scaling extension is used
<span>[<a href="#RFC7323" class="xref">47</a>]</span>.<a href="#section-3.1-6.16.2" class="pilcrow"></a></p>
<p id="section-3.1-6.16.3">
The window size <span class="bcp14">MUST</span> be treated as an unsigned number, or else
large window sizes will appear like negative windows and TCP will
not work (MUST-1). It is <span class="bcp14">RECOMMENDED</span> that implementations will reserve
32-bit fields for the send and receive window sizes in the connection
record and do all window computations with 32 bits (REC-1).<a href="#section-3.1-6.16.3" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.17">Checksum:</dt>
<dd style="margin-left: 1.0em" id="section-3.1-6.18">
<p id="section-3.1-6.18.1">
16 bits<a href="#section-3.1-6.18.1" class="pilcrow"></a></p>
<p id="section-3.1-6.18.2">
The checksum field is the 16-bit ones' complement of the ones'
complement sum of all 16-bit words in the header and text. The checksum computation needs to ensure the 16-bit alignment of the data being summed. If a
segment contains an odd number of header and text octets, alignment can be achieved by
padding the last octet with zeros on its right to
form a 16-bit word for checksum purposes. The pad is not
transmitted as part of the segment. While computing the checksum,
the checksum field itself is replaced with zeros.<a href="#section-3.1-6.18.2" class="pilcrow"></a></p>
<p id="section-3.1-6.18.3">
The checksum also covers a pseudo-header (<a href="#v4pseudo" class="xref">Figure 2</a>) conceptually prefixed to the TCP
header. The pseudo-header is 96 bits for IPv4 and 320 bits for IPv6.
Including the pseudo-header in the checksum gives the TCP connection
protection against misrouted segments. This information is carried in IP headers
and is transferred across the TCP/network interface in the arguments or
results of calls by the TCP implementation on the IP layer.<a href="#section-3.1-6.18.3" class="pilcrow"></a></p>
<span id="name-ipv4-pseudo-header"></span><div id="v4pseudo">
<figure id="figure-2">
<div class="alignLeft art-text artwork" id="section-3.1-6.18.4.1">
<pre>
+--------+--------+--------+--------+
| Source Address |
+--------+--------+--------+--------+
| Destination Address |
+--------+--------+--------+--------+
| zero | PTCL | TCP Length |
+--------+--------+--------+--------+
</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-ipv4-pseudo-header" class="selfRef">IPv4 Pseudo-header</a>
</figcaption></figure>
</div>
<span class="break"></span><dl class="dlNewline" id="section-3.1-6.18.5">
<dt id="section-3.1-6.18.5.1">Pseudo-header components for IPv4:</dt>
<dd style="margin-left: 1.0em" id="section-3.1-6.18.5.2">
<span class="break"></span><dl class="dlParallel" id="section-3.1-6.18.5.2.1">
<dt id="section-3.1-6.18.5.2.1.1">Source Address:</dt>
<dd style="margin-left: 1.5em" id="section-3.1-6.18.5.2.1.2">the IPv4 source address in network byte order<a href="#section-3.1-6.18.5.2.1.2" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.18.5.2.1.3">Destination Address:</dt>
<dd style="margin-left: 1.5em" id="section-3.1-6.18.5.2.1.4">the IPv4 destination address in network byte order<a href="#section-3.1-6.18.5.2.1.4" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.18.5.2.1.5">zero:</dt>
<dd style="margin-left: 1.5em" id="section-3.1-6.18.5.2.1.6">bits set to zero<a href="#section-3.1-6.18.5.2.1.6" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.18.5.2.1.7">PTCL:</dt>
<dd style="margin-left: 1.5em" id="section-3.1-6.18.5.2.1.8">the protocol number from the IP header<a href="#section-3.1-6.18.5.2.1.8" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.18.5.2.1.9">TCP Length:</dt>
<dd style="margin-left: 1.5em" id="section-3.1-6.18.5.2.1.10">
the TCP header length plus the data length in
octets (this is not an explicitly transmitted quantity but is
computed), and it does not count the 12 octets of the pseudo-header.<a href="#section-3.1-6.18.5.2.1.10" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
</dl>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-3.1-6.18.6">
For IPv6, the pseudo-header is defined in Section <a href="https://www.rfc-editor.org/rfc/rfc8200#section-8.1" class="relref">8.1</a> of RFC 8200 <span>[<a href="#RFC8200" class="xref">13</a>]</span> and contains the IPv6 Source Address and Destination Address, an Upper-Layer Packet Length (a 32-bit value otherwise equivalent to TCP Length in the IPv4 pseudo-header), three bytes of zero padding, and a Next Header value, which differs from the IPv6 header value if there are extension headers present between IPv6 and TCP.<a href="#section-3.1-6.18.6" class="pilcrow"></a></p>
<p id="section-3.1-6.18.7">
The TCP checksum is never optional. The sender <span class="bcp14">MUST</span> generate it (MUST-2)
and the receiver <span class="bcp14">MUST</span> check it (MUST-3).<a href="#section-3.1-6.18.7" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.19">Urgent Pointer:</dt>
<dd style="margin-left: 1.0em" id="section-3.1-6.20">
<p id="section-3.1-6.20.1">
16 bits<a href="#section-3.1-6.20.1" class="pilcrow"></a></p>
<p id="section-3.1-6.20.2">
This field communicates the current value of the urgent pointer as a
positive offset from the sequence number in this segment. The
urgent pointer points to the sequence number of the octet following the urgent data. This field is only to be interpreted in segments with
the URG control bit set.<a href="#section-3.1-6.20.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.21">Options:</dt>
<dd style="margin-left: 1.0em" id="section-3.1-6.22">
<p id="section-3.1-6.22.1">
[TCP Option]; size(Options) == (DOffset-5)*32; present only when DOffset &gt; 5.
Note that this size expression also includes any padding trailing the actual options present.<a href="#section-3.1-6.22.1" class="pilcrow"></a></p>
<p id="section-3.1-6.22.2">
Options may occupy space at the end of the TCP header and are a
multiple of 8 bits in length. All options are included in the
checksum. An option may begin on any octet boundary. There are two
cases for the format of an option:<a href="#section-3.1-6.22.2" class="pilcrow"></a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.1-6.22.3">
<dt id="section-3.1-6.22.3.1">Case 1:</dt>
<dd style="margin-left: 1.5em" id="section-3.1-6.22.3.2">A single octet of option-kind.<a href="#section-3.1-6.22.3.2" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.22.3.3">Case 2:</dt>
<dd style="margin-left: 1.5em" id="section-3.1-6.22.3.4">An octet of option-kind (Kind), an octet of option-length, and
the actual option-data octets.<a href="#section-3.1-6.22.3.4" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-3.1-6.22.4">
The option-length counts the two octets of option-kind and
option-length as well as the option-data octets.<a href="#section-3.1-6.22.4" class="pilcrow"></a></p>
<p id="section-3.1-6.22.5">
Note that the list of options may be shorter than the Data Offset
field might imply. The content of the header beyond the
End of Option List Option <span class="bcp14">MUST</span> be header padding of zeros (MUST-69).<a href="#section-3.1-6.22.5" class="pilcrow"></a></p>
<p id="section-3.1-6.22.6">
The list of all currently defined options is managed by IANA <span>[<a href="#TCP-parameters-registry" class="xref">62</a>]</span>, and each option is defined in other RFCs, as indicated there. That set includes experimental options that can be extended to support multiple concurrent usages <span>[<a href="#RFC6994" class="xref">45</a>]</span>.<a href="#section-3.1-6.22.6" class="pilcrow"></a></p>
<p id="section-3.1-6.22.7">
A given TCP implementation can support any currently defined options, but the following options <span class="bcp14">MUST</span> be supported (MUST-4 -- note Maximum Segment Size Option support is also part of MUST-14 in <a href="#mss" class="xref">Section 3.7.1</a>):<a href="#section-3.1-6.22.7" class="pilcrow"></a></p>
<span id="name-mandatory-option-set"></span><table class="center" id="table-1">
<caption>
<a href="#table-1" class="selfRef">Table 1</a>:
<a href="#name-mandatory-option-set" class="selfRef">Mandatory Option Set</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Kind</th>
<th class="text-left" rowspan="1" colspan="1">Length</th>
<th class="text-left" rowspan="1" colspan="1">Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">-</td>
<td class="text-left" rowspan="1" colspan="1">End of Option List Option.</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">1</td>
<td class="text-left" rowspan="1" colspan="1">-</td>
<td class="text-left" rowspan="1" colspan="1">No-Operation.</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">2</td>
<td class="text-left" rowspan="1" colspan="1">4</td>
<td class="text-left" rowspan="1" colspan="1">Maximum Segment Size.</td>
</tr>
</tbody>
</table>
<p id="section-3.1-6.22.9">
These options are specified in detail in <a href="#Option-Definitions" class="xref">Section 3.2</a>.<a href="#section-3.1-6.22.9" class="pilcrow"></a></p>
<p id="section-3.1-6.22.10">
A TCP implementation <span class="bcp14">MUST</span> be able to receive a TCP Option in any segment (MUST-5).<a href="#section-3.1-6.22.10" class="pilcrow"></a></p>
<p id="section-3.1-6.22.11">
A TCP implementation <span class="bcp14">MUST</span> (MUST-6) ignore without error any TCP Option it does not
implement, assuming that the option has a length field. All
TCP Options except End of Option List Option (EOL) and No-Operation (NOP) <span class="bcp14">MUST</span> have length fields, including all future options (MUST-68).
TCP implementations <span class="bcp14">MUST</span> be prepared to handle an illegal option length
(e.g., zero); a suggested procedure is to
reset the connection and log the error cause (MUST-7).<a href="#section-3.1-6.22.11" class="pilcrow"></a></p>
<p id="section-3.1-6.22.12">Note: There is ongoing work to extend the space available for TCP Options, such as <span>[<a href="#I-D.ietf-tcpm-tcp-edo" class="xref">65</a>]</span>.<a href="#section-3.1-6.22.12" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-6.23">Data:</dt>
<dd style="margin-left: 1.0em" id="section-3.1-6.24">
<p id="section-3.1-6.24.1">
variable length<a href="#section-3.1-6.24.1" class="pilcrow"></a></p>
<p id="section-3.1-6.24.2">
User data carried by the TCP segment.<a href="#section-3.1-6.24.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
</dl>
</section>
<div id="Option-Definitions">
<section id="section-3.2">
<h3 id="name-specific-option-definitions">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-specific-option-definitions" class="section-name selfRef">Specific Option Definitions</a>
</h3>
<p id="section-3.2-1">
A TCP Option, in the mandatory option set, is one of an End of Option List Option, a No-Operation Option, or a Maximum Segment Size Option.<a href="#section-3.2-1" class="pilcrow"></a></p>
<p id="section-3.2-2">An End of Option List Option is formatted as follows:<a href="#section-3.2-2" class="pilcrow"></a></p>
<div class="alignLeft art-text artwork" id="section-3.2-3">
<pre>
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| 0 |
+-+-+-+-+-+-+-+-+
</pre><a href="#section-3.2-3" class="pilcrow"></a>
</div>
<p id="section-3.2-4">
where:<a href="#section-3.2-4" class="pilcrow"></a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.2-5">
<dt id="section-3.2-5.1">Kind:</dt>
<dd style="margin-left: 1.0em" id="section-3.2-5.2">
<p id="section-3.2-5.2.1">
1 byte; Kind == 0.<a href="#section-3.2-5.2.1" class="pilcrow"></a></p>
<p id="section-3.2-5.2.2">
This option code indicates the end of the option list. This
might not coincide with the end of the TCP header according to
the Data Offset field. This is used at the end of all options,
not the end of each option, and need only be used if the end of
the options would not otherwise coincide with the end of the TCP
header.<a href="#section-3.2-5.2.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-3.2-6">A No-Operation Option is formatted as follows:<a href="#section-3.2-6" class="pilcrow"></a></p>
<div class="alignLeft art-text artwork" id="section-3.2-7">
<pre>
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| 1 |
+-+-+-+-+-+-+-+-+
</pre><a href="#section-3.2-7" class="pilcrow"></a>
</div>
<p id="section-3.2-8">where:<a href="#section-3.2-8" class="pilcrow"></a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.2-9">
<dt id="section-3.2-9.1">Kind:</dt>
<dd style="margin-left: 1.0em" id="section-3.2-9.2">
<p id="section-3.2-9.2.1">
1 byte; Kind == 1.<a href="#section-3.2-9.2.1" class="pilcrow"></a></p>
<p id="section-3.2-9.2.2">
This option code can be used between options, for example, to
align the beginning of a subsequent option on a word boundary.
There is no guarantee that senders will use this option, so
receivers <span class="bcp14">MUST</span> be prepared to process options even if they do
not begin on a word boundary (MUST-64).<a href="#section-3.2-9.2.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-3.2-10">A Maximum Segment Size Option is formatted as follows:<a href="#section-3.2-10" class="pilcrow"></a></p>
<div class="alignLeft art-text artwork" id="section-3.2-11">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 2 | Length | Maximum Segment Size (MSS) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre><a href="#section-3.2-11" class="pilcrow"></a>
</div>
<p id="section-3.2-12">where:<a href="#section-3.2-12" class="pilcrow"></a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.2-13">
<dt id="section-3.2-13.1">Kind:</dt>
<dd style="margin-left: 1.0em" id="section-3.2-13.2">
<p id="section-3.2-13.2.1">
1 byte; Kind == 2.<a href="#section-3.2-13.2.1" class="pilcrow"></a></p>
<p id="section-3.2-13.2.2">
If this option is present, then it communicates the maximum
receive segment size at the TCP endpoint that sends this segment.
This value is limited by the IP reassembly limit. This field may be sent in the initial connection request
(i.e., in segments with the SYN control bit set) and <span class="bcp14">MUST NOT</span>
be sent in other segments (MUST-65). If this
option is not used, any segment size is allowed.
A more complete description of this option is provided in <a href="#mss" class="xref">Section 3.7.1</a>.<a href="#section-3.2-13.2.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.2-13.3">Length:</dt>
<dd style="margin-left: 1.0em" id="section-3.2-13.4">
<p id="section-3.2-13.4.1">
1 byte; Length == 4.<a href="#section-3.2-13.4.1" class="pilcrow"></a></p>
<p id="section-3.2-13.4.2">
Length of the option in bytes.<a href="#section-3.2-13.4.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.2-13.5">Maximum Segment Size (MSS):</dt>
<dd style="margin-left: 1.0em" id="section-3.2-13.6">
<p id="section-3.2-13.6.1">
2 bytes.<a href="#section-3.2-13.6.1" class="pilcrow"></a></p>
<p id="section-3.2-13.6.2">
The maximum receive segment size at the TCP endpoint that sends this segment.<a href="#section-3.2-13.6.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
</dl>
<section id="section-3.2.1">
<h4 id="name-other-common-options">
<a href="#section-3.2.1" class="section-number selfRef">3.2.1. </a><a href="#name-other-common-options" class="section-name selfRef">Other Common Options</a>
</h4>
<p id="section-3.2.1-1">
Additional RFCs define some other commonly used options that are recommended to implement for high performance but are not necessary for basic TCP interoperability. These are the TCP Selective Acknowledgment (SACK) Option <span>[<a href="#RFC2018" class="xref">22</a>]</span> <span>[<a href="#RFC2883" class="xref">26</a>]</span>, TCP Timestamp (TS) Option <span>[<a href="#RFC7323" class="xref">47</a>]</span>, and TCP Window Scale (WS) Option <span>[<a href="#RFC7323" class="xref">47</a>]</span>.<a href="#section-3.2.1-1" class="pilcrow"></a></p>
</section>
<section id="section-3.2.2">
<h4 id="name-experimental-tcp-options">
<a href="#section-3.2.2" class="section-number selfRef">3.2.2. </a><a href="#name-experimental-tcp-options" class="section-name selfRef">Experimental TCP Options</a>
</h4>
<p id="section-3.2.2-1">
Experimental TCP Option values are defined in <span>[<a href="#RFC4727" class="xref">30</a>]</span>, and <span>[<a href="#RFC6994" class="xref">45</a>]</span> describes the current recommended usage for these experimental values.<a href="#section-3.2.2-1" class="pilcrow"></a></p>
</section>
</section>
</div>
<section id="section-3.3">
<h3 id="name-tcp-terminology-overview">
<a href="#section-3.3" class="section-number selfRef">3.3. </a><a href="#name-tcp-terminology-overview" class="section-name selfRef">TCP Terminology Overview</a>
</h3>
<p id="section-3.3-1">
This section includes an overview of key terms needed to understand the detailed protocol operation in the rest of the document. There is a glossary of terms in <a href="#glossary" class="xref">Section 4</a>.<a href="#section-3.3-1" class="pilcrow"></a></p>
<section id="section-3.3.1">
<h4 id="name-key-connection-state-variab">
<a href="#section-3.3.1" class="section-number selfRef">3.3.1. </a><a href="#name-key-connection-state-variab" class="section-name selfRef">Key Connection State Variables</a>
</h4>
<p id="section-3.3.1-1">
Before we can discuss the operation of the TCP implementation in detail, we need
to introduce some detailed terminology. The maintenance of a TCP
connection requires maintaining state for several variables. We conceive
of these variables being stored in a connection record called a
Transmission Control Block or TCB. Among the variables stored in the
TCB are the local and remote IP addresses and port numbers, the IP security level, and compartment
of the connection (see <a href="#seccomp" class="xref">Appendix A.1</a>), pointers to the user's send and receive
buffers, pointers to the retransmit queue and to the current segment.
In addition, several variables relating to the send and receive
sequence numbers are stored in the TCB.<a href="#section-3.3.1-1" class="pilcrow"></a></p>
<span id="name-send-sequence-variables"></span><table class="center" id="table-2">
<caption>
<a href="#table-2" class="selfRef">Table 2</a>:
<a href="#name-send-sequence-variables" class="selfRef">Send Sequence Variables</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Variable</th>
<th class="text-left" rowspan="1" colspan="1">Description</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">SND.UNA</td>
<td class="text-left" rowspan="1" colspan="1">send unacknowledged</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">SND.NXT</td>
<td class="text-left" rowspan="1" colspan="1">send next</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">SND.WND</td>
<td class="text-left" rowspan="1" colspan="1">send window</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">SND.UP</td>
<td class="text-left" rowspan="1" colspan="1">send urgent pointer</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">SND.WL1</td>
<td class="text-left" rowspan="1" colspan="1">segment sequence number used for last window update</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">SND.WL2</td>
<td class="text-left" rowspan="1" colspan="1">segment acknowledgment number used for last window update</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">ISS</td>
<td class="text-left" rowspan="1" colspan="1">initial send sequence number</td>
</tr>
</tbody>
</table>
<span id="name-receive-sequence-variables"></span><table class="center" id="table-3">
<caption>
<a href="#table-3" class="selfRef">Table 3</a>:
<a href="#name-receive-sequence-variables" class="selfRef">Receive Sequence Variables</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Variable</th>
<th class="text-left" rowspan="1" colspan="1">Description</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">RCV.NXT</td>
<td class="text-left" rowspan="1" colspan="1">receive next</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">RCV.WND</td>
<td class="text-left" rowspan="1" colspan="1">receive window</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">RCV.UP</td>
<td class="text-left" rowspan="1" colspan="1">receive urgent pointer</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">IRS</td>
<td class="text-left" rowspan="1" colspan="1">initial receive sequence number</td>
</tr>
</tbody>
</table>
<p id="section-3.3.1-4">
The following diagrams may help to relate some of these variables to
the sequence space.<a href="#section-3.3.1-4" class="pilcrow"></a></p>
<span id="name-send-sequence-space"></span><div id="send_seq_space">
<figure id="figure-3">
<div class="alignLeft art-text artwork" id="section-3.3.1-5.1">
<pre>
1 2 3 4
----------|----------|----------|----------
SND.UNA SND.NXT SND.UNA
+SND.WND
1 - old sequence numbers that have been acknowledged
2 - sequence numbers of unacknowledged data
3 - sequence numbers allowed for new data transmission
4 - future sequence numbers that are not yet allowed
</pre>
</div>
<figcaption><a href="#figure-3" class="selfRef">Figure 3</a>:
<a href="#name-send-sequence-space" class="selfRef">Send Sequence Space</a>
</figcaption></figure>
</div>
<p id="section-3.3.1-6">
The send window is the portion of the sequence space labeled 3 in
<a href="#send_seq_space" class="xref">Figure 3</a>.<a href="#section-3.3.1-6" class="pilcrow"></a></p>
<span id="name-receive-sequence-space"></span><div id="recv_seq_space">
<figure id="figure-4">
<div class="alignLeft art-text artwork" id="section-3.3.1-7.1">
<pre>
1 2 3
----------|----------|----------
RCV.NXT RCV.NXT
+RCV.WND
1 - old sequence numbers that have been acknowledged
2 - sequence numbers allowed for new reception
3 - future sequence numbers that are not yet allowed
</pre>
</div>
<figcaption><a href="#figure-4" class="selfRef">Figure 4</a>:
<a href="#name-receive-sequence-space" class="selfRef">Receive Sequence Space</a>
</figcaption></figure>
</div>
<p id="section-3.3.1-8">
The receive window is the portion of the sequence space labeled 2 in
<a href="#recv_seq_space" class="xref">Figure 4</a>.<a href="#section-3.3.1-8" class="pilcrow"></a></p>
<p id="section-3.3.1-9">
There are also some variables used frequently in the discussion that
take their values from the fields of the current segment.<a href="#section-3.3.1-9" class="pilcrow"></a></p>
<span id="name-current-segment-variables"></span><table class="center" id="table-4">
<caption>
<a href="#table-4" class="selfRef">Table 4</a>:
<a href="#name-current-segment-variables" class="selfRef">Current Segment Variables</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Variable</th>
<th class="text-left" rowspan="1" colspan="1">Description</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">SEG.SEQ</td>
<td class="text-left" rowspan="1" colspan="1">segment sequence number</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">SEG.ACK</td>
<td class="text-left" rowspan="1" colspan="1">segment acknowledgment number</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">SEG.LEN</td>
<td class="text-left" rowspan="1" colspan="1">segment length</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">SEG.WND</td>
<td class="text-left" rowspan="1" colspan="1">segment window</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">SEG.UP</td>
<td class="text-left" rowspan="1" colspan="1">segment urgent pointer</td>
</tr>
</tbody>
</table>
</section>
<section id="section-3.3.2">
<h4 id="name-state-machine-overview">
<a href="#section-3.3.2" class="section-number selfRef">3.3.2. </a><a href="#name-state-machine-overview" class="section-name selfRef">State Machine Overview</a>
</h4>
<p id="section-3.3.2-1">
A connection progresses through a series of states during its
lifetime. The states are: LISTEN, SYN-SENT, SYN-RECEIVED,
ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK,
TIME-WAIT, and the fictional state CLOSED. CLOSED is fictional
because it represents the state when there is no TCB, and therefore,
no connection. Briefly the meanings of the states are:<a href="#section-3.3.2-1" class="pilcrow"></a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.3.2-2">
<dt id="section-3.3.2-2.1">LISTEN -</dt>
<dd style="margin-left: 1.5em" id="section-3.3.2-2.2">represents waiting for a connection request from any remote
TCP peer and port.<a href="#section-3.3.2-2.2" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3.2-2.3">SYN-SENT -</dt>
<dd style="margin-left: 1.5em" id="section-3.3.2-2.4">represents waiting for a matching connection request
after having sent a connection request.<a href="#section-3.3.2-2.4" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3.2-2.5">SYN-RECEIVED -</dt>
<dd style="margin-left: 1.5em" id="section-3.3.2-2.6">represents waiting for a confirming connection
request acknowledgment after having both received and sent a
connection request.<a href="#section-3.3.2-2.6" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3.2-2.7">ESTABLISHED -</dt>
<dd style="margin-left: 1.5em" id="section-3.3.2-2.8">represents an open connection, data received can be
delivered to the user. The normal state for the data transfer phase
of the connection.<a href="#section-3.3.2-2.8" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3.2-2.9">FIN-WAIT-1 -</dt>
<dd style="margin-left: 1.5em" id="section-3.3.2-2.10">represents waiting for a connection termination request
from the remote TCP peer, or an acknowledgment of the connection
termination request previously sent.<a href="#section-3.3.2-2.10" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3.2-2.11">FIN-WAIT-2 -</dt>
<dd style="margin-left: 1.5em" id="section-3.3.2-2.12">represents waiting for a connection termination request
from the remote TCP peer.<a href="#section-3.3.2-2.12" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3.2-2.13">CLOSE-WAIT -</dt>
<dd style="margin-left: 1.5em" id="section-3.3.2-2.14">represents waiting for a connection termination request
from the local user.<a href="#section-3.3.2-2.14" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3.2-2.15">CLOSING -</dt>
<dd style="margin-left: 1.5em" id="section-3.3.2-2.16">represents waiting for a connection termination request
acknowledgment from the remote TCP peer.<a href="#section-3.3.2-2.16" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3.2-2.17">LAST-ACK -</dt>
<dd style="margin-left: 1.5em" id="section-3.3.2-2.18">represents waiting for an acknowledgment of the
connection termination request previously sent to the remote TCP peer
(this termination request sent to the remote TCP peer already included an acknowledgment of the termination request sent from the remote TCP peer).<a href="#section-3.3.2-2.18" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3.2-2.19">TIME-WAIT -</dt>
<dd style="margin-left: 1.5em" id="section-3.3.2-2.20">represents waiting for enough time to pass to be sure
the remote TCP peer received the acknowledgment of its connection
termination request and to avoid new connections being impacted by delayed
segments from previous connections.<a href="#section-3.3.2-2.20" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3.2-2.21">CLOSED -</dt>
<dd style="margin-left: 1.5em" id="section-3.3.2-2.22">represents no connection state at all.<a href="#section-3.3.2-2.22" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-3.3.2-3">
A TCP connection progresses from one state to another in response to
events. The events are the user calls, OPEN, SEND, RECEIVE, CLOSE,
ABORT, and STATUS; the incoming segments, particularly those
containing the SYN, ACK, RST, and FIN flags; and timeouts.<a href="#section-3.3.2-3" class="pilcrow"></a></p>
<p id="section-3.3.2-4">
The OPEN call specifies
whether connection establishment is to be actively pursued, or to
be passively waited for.<a href="#section-3.3.2-4" class="pilcrow"></a></p>
<p id="section-3.3.2-5">
A passive OPEN request means that the process wants to accept incoming
connection requests, in contrast to an active OPEN attempting to initiate a connection.<a href="#section-3.3.2-5" class="pilcrow"></a></p>
<p id="section-3.3.2-6">
The state diagram in <a href="#conn_states" class="xref">Figure 5</a> illustrates only state changes, together
with the causing events and resulting actions, but addresses neither
error conditions nor actions that are not connected with state
changes. In a later section, more detail is offered with respect to
the reaction of the TCP implementation to events. Some state names are abbreviated or hyphenated differently in the diagram from how they appear elsewhere in the document.<a href="#section-3.3.2-6" class="pilcrow"></a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.3.2-7">
<dt id="section-3.3.2-7.1">
NOTA BENE:</dt>
<dd style="margin-left: 1.5em" id="section-3.3.2-7.2">This diagram is only a summary and must not be taken as
the total specification. Many details are not included.<a href="#section-3.3.2-7.2" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
</dl>
<span id="name-tcp-connection-state-diagra"></span><div id="conn_states">
<figure id="figure-5">
<div class="alignLeft art-text artwork" id="section-3.3.2-8.1">
<pre>
+---------+ ---------\ active OPEN
| CLOSED | \ -----------
+---------+&lt;---------\ \ create TCB
| ^ \ \ snd SYN
passive OPEN | | CLOSE \ \
------------ | | ---------- \ \
create TCB | | delete TCB \ \
V | \ \
rcv RST (note 1) +---------+ CLOSE | \
--------------------&gt;| LISTEN | ---------- | |
/ +---------+ delete TCB | |
/ rcv SYN | | SEND | |
/ ----------- | | ------- | V
+--------+ snd SYN,ACK / \ snd SYN +--------+
| |&lt;----------------- ------------------&gt;| |
| SYN | rcv SYN | SYN |
| RCVD |&lt;-----------------------------------------------| SENT |
| | snd SYN,ACK | |
| |------------------ -------------------| |
+--------+ rcv ACK of SYN \ / rcv SYN,ACK +--------+
| -------------- | | -----------
| x | | snd ACK
| V V
| CLOSE +---------+
| ------- | ESTAB |
| snd FIN +---------+
| CLOSE | | rcv FIN
V ------- | | -------
+---------+ snd FIN / \ snd ACK +---------+
| FIN |&lt;---------------- ------------------&gt;| CLOSE |
| WAIT-1 |------------------ | WAIT |
+---------+ rcv FIN \ +---------+
| rcv ACK of FIN ------- | CLOSE |
| -------------- snd ACK | ------- |
V x V snd FIN V
+---------+ +---------+ +---------+
|FINWAIT-2| | CLOSING | | LAST-ACK|
+---------+ +---------+ +---------+
| rcv ACK of FIN | rcv ACK of FIN |
| rcv FIN -------------- | Timeout=2MSL -------------- |
| ------- x V ------------ x V
\ snd ACK +---------+delete TCB +---------+
--------------------&gt;|TIME-WAIT|-------------------&gt;| CLOSED |
+---------+ +---------+
</pre>
</div>
<figcaption><a href="#figure-5" class="selfRef">Figure 5</a>:
<a href="#name-tcp-connection-state-diagra" class="selfRef">TCP Connection State Diagram</a>
</figcaption></figure>
</div>
<p id="section-3.3.2-9">The following notes apply to <a href="#conn_states" class="xref">Figure 5</a>:<a href="#section-3.3.2-9" class="pilcrow"></a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.3.2-10">
<dt id="section-3.3.2-10.1">
Note 1:</dt>
<dd style="margin-left: 1.5em" id="section-3.3.2-10.2">The transition from SYN-RECEIVED to LISTEN on receiving a RST is
conditional on having reached SYN-RECEIVED after a passive OPEN.<a href="#section-3.3.2-10.2" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3.2-10.3">
Note 2:</dt>
<dd style="margin-left: 1.5em" id="section-3.3.2-10.4">The figure omits a transition from FIN-WAIT-1 to TIME-WAIT if
a FIN is received and the local FIN is also acknowledged.<a href="#section-3.3.2-10.4" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3.2-10.5">
Note 3:</dt>
<dd style="margin-left: 1.5em" id="section-3.3.2-10.6">A RST can be sent from any state with a corresponding transition to TIME-WAIT (see <span>[<a href="#FTY99" class="xref">70</a>]</span> for rationale). These transitions are not explicitly shown; otherwise, the diagram would become very difficult to read. Similarly, receipt of a RST from any state results in a transition to LISTEN or CLOSED, though this is also omitted from the diagram for legibility.<a href="#section-3.3.2-10.6" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<div id="sequence-numbers">
<section id="section-3.4">
<h3 id="name-sequence-numbers">
<a href="#section-3.4" class="section-number selfRef">3.4. </a><a href="#name-sequence-numbers" class="section-name selfRef">Sequence Numbers</a>
</h3>
<p id="section-3.4-1">
A fundamental notion in the design is that every octet of data sent
over a TCP connection has a sequence number. Since every octet is
sequenced, each of them can be acknowledged. The acknowledgment
mechanism employed is cumulative so that an acknowledgment of sequence
number X indicates that all octets up to but not including X have been
received. This mechanism allows for straightforward duplicate
detection in the presence of retransmission. The numbering scheme of octets
within a segment is as follows: the first data octet immediately following
the header is the lowest numbered, and the following octets are
numbered consecutively.<a href="#section-3.4-1" class="pilcrow"></a></p>
<p id="section-3.4-2">
It is essential to remember that the actual sequence number space is
finite, though large. This space ranges from 0 to 2<sup>32</sup> - 1.
Since the space is finite, all arithmetic dealing with sequence
numbers must be performed modulo 2<sup>32</sup>. This unsigned arithmetic
preserves the relationship of sequence numbers as they cycle from
2<sup>32</sup> - 1 to 0 again. There are some subtleties to computer modulo
arithmetic, so great care should be taken in programming the
comparison of such values. The symbol "=&lt;" means "less than or equal"
(modulo 2<sup>32</sup>).<a href="#section-3.4-2" class="pilcrow"></a></p>
<p id="section-3.4-3">
The typical kinds of sequence number comparisons that the TCP implementation must
perform include:<a href="#section-3.4-3" class="pilcrow"></a></p>
<span class="break"></span><dl class="olPercent" id="section-3.4-4">
<dt>(a)</dt>
<dd id="section-3.4-4.1">Determining that an acknowledgment refers to some sequence
number sent but not yet acknowledged.<a href="#section-3.4-4.1" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt>(b)</dt>
<dd id="section-3.4-4.2">Determining that all sequence numbers occupied by a segment
have been acknowledged (e.g., to remove the segment from a
retransmission queue).<a href="#section-3.4-4.2" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt>(c)</dt>
<dd id="section-3.4-4.3">Determining that an incoming segment contains sequence numbers
that are expected (i.e., that the segment "overlaps" the
receive window).<a href="#section-3.4-4.3" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-3.4-5">
In response to sending data, the TCP endpoint will receive acknowledgments. The
following comparisons are needed to process the acknowledgments:<a href="#section-3.4-5" class="pilcrow"></a></p>
<p style="margin-left: 1.5em" id="section-3.4-6">
SND.UNA = oldest unacknowledged sequence number<a href="#section-3.4-6" class="pilcrow"></a></p>
<p style="margin-left: 1.5em" id="section-3.4-7">
SND.NXT = next sequence number to be sent<a href="#section-3.4-7" class="pilcrow"></a></p>
<p style="margin-left: 1.5em" id="section-3.4-8">
SEG.ACK = acknowledgment from the receiving TCP peer (next sequence
number expected by the receiving TCP peer)<a href="#section-3.4-8" class="pilcrow"></a></p>
<p style="margin-left: 1.5em" id="section-3.4-9">
SEG.SEQ = first sequence number of a segment<a href="#section-3.4-9" class="pilcrow"></a></p>
<p style="margin-left: 1.5em" id="section-3.4-10">
SEG.LEN = the number of octets occupied by the data in the segment
(counting SYN and FIN)<a href="#section-3.4-10" class="pilcrow"></a></p>
<p style="margin-left: 1.5em" id="section-3.4-11">
SEG.SEQ+SEG.LEN-1 = last sequence number of a segment<a href="#section-3.4-11" class="pilcrow"></a></p>
<p id="section-3.4-12">
A new acknowledgment (called an "acceptable ack") is one for which
the inequality below holds:<a href="#section-3.4-12" class="pilcrow"></a></p>
<p style="margin-left: 1.5em" id="section-3.4-13">
SND.UNA &lt; SEG.ACK =&lt; SND.NXT<a href="#section-3.4-13" class="pilcrow"></a></p>
<p id="section-3.4-14">
A segment on the retransmission queue is fully acknowledged if the sum
of its sequence number and length is less than or equal to the
acknowledgment value in the incoming segment.<a href="#section-3.4-14" class="pilcrow"></a></p>
<p id="section-3.4-15">
When data is received, the following comparisons are needed:<a href="#section-3.4-15" class="pilcrow"></a></p>
<p style="margin-left: 1.5em" id="section-3.4-16">
RCV.NXT = next sequence number expected on an incoming segment, and
is the left or lower edge of the receive window<a href="#section-3.4-16" class="pilcrow"></a></p>
<p style="margin-left: 1.5em" id="section-3.4-17">
RCV.NXT+RCV.WND-1 = last sequence number expected on an incoming
segment, and is the right or upper edge of the receive window<a href="#section-3.4-17" class="pilcrow"></a></p>
<p style="margin-left: 1.5em" id="section-3.4-18">
SEG.SEQ = first sequence number occupied by the incoming segment<a href="#section-3.4-18" class="pilcrow"></a></p>
<p style="margin-left: 1.5em" id="section-3.4-19">
SEG.SEQ+SEG.LEN-1 = last sequence number occupied by the incoming
segment<a href="#section-3.4-19" class="pilcrow"></a></p>
<p id="section-3.4-20">
A segment is judged to occupy a portion of valid receive sequence
space if<a href="#section-3.4-20" class="pilcrow"></a></p>
<p style="margin-left: 1.5em" id="section-3.4-21">
RCV.NXT =&lt; SEG.SEQ &lt; RCV.NXT+RCV.WND<a href="#section-3.4-21" class="pilcrow"></a></p>
<p id="section-3.4-22">
or<a href="#section-3.4-22" class="pilcrow"></a></p>
<p style="margin-left: 1.5em" id="section-3.4-23">
RCV.NXT =&lt; SEG.SEQ+SEG.LEN-1 &lt; RCV.NXT+RCV.WND<a href="#section-3.4-23" class="pilcrow"></a></p>
<p id="section-3.4-24">
The first part of this test checks to see if the beginning of the
segment falls in the window, the second part of the test checks to see
if the end of the segment falls in the window; if the segment passes
either part of the test, it contains data in the window.<a href="#section-3.4-24" class="pilcrow"></a></p>
<p id="section-3.4-25">
Actually, it is a little more complicated than this. Due to zero
windows and zero-length segments, we have four cases for the
acceptability of an incoming segment:<a href="#section-3.4-25" class="pilcrow"></a></p>
<span id="name-segment-acceptability-tests"></span><table class="center" id="table-5">
<caption>
<a href="#table-5" class="selfRef">Table 5</a>:
<a href="#name-segment-acceptability-tests" class="selfRef">Segment Acceptability Tests</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Segment Length</th>
<th class="text-left" rowspan="1" colspan="1">Receive Window</th>
<th class="text-left" rowspan="1" colspan="1">Test</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">SEG.SEQ = RCV.NXT</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">&gt;0</td>
<td class="text-left" rowspan="1" colspan="1">RCV.NXT =&lt; SEG.SEQ &lt; RCV.NXT+RCV.WND</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">&gt;0</td>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">not acceptable</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">&gt;0</td>
<td class="text-left" rowspan="1" colspan="1">&gt;0</td>
<td class="text-left" rowspan="1" colspan="1">
<p id="section-3.4-26.2.4.3.1">RCV.NXT =&lt; SEG.SEQ &lt; RCV.NXT+RCV.WND<a href="#section-3.4-26.2.4.3.1" class="pilcrow"></a></p>
<p id="section-3.4-26.2.4.3.2">or<a href="#section-3.4-26.2.4.3.2" class="pilcrow"></a></p>
<p id="section-3.4-26.2.4.3.3">RCV.NXT =&lt; SEG.SEQ+SEG.LEN-1 &lt; RCV.NXT+RCV.WND<a href="#section-3.4-26.2.4.3.3" class="pilcrow"></a></p>
</td>
</tr>
</tbody>
</table>
<p id="section-3.4-27">
Note that when the receive window is zero no segments should be
acceptable except ACK segments. Thus, it is possible for a TCP implementation to
maintain a zero receive window while transmitting data and receiving
ACKs. A TCP receiver <span class="bcp14">MUST</span>
process the RST and URG fields of all incoming segments, even when the receive window is zero (MUST-66).<a href="#section-3.4-27" class="pilcrow"></a></p>
<p id="section-3.4-28">
We have taken advantage of the numbering scheme to protect certain
control information as well. This is achieved by implicitly including
some control flags in the sequence space so they can be retransmitted
and acknowledged without confusion (i.e., one and only one copy of the
control will be acted upon). Control information is not physically
carried in the segment data space. Consequently, we must adopt rules
for implicitly assigning sequence numbers to control. The SYN and FIN
are the only controls requiring this protection, and these controls
are used only at connection opening and closing. For sequence number
purposes, the SYN is considered to occur before the first actual data
octet of the segment in which it occurs, while the FIN is considered
to occur after the last actual data octet in a segment in which it
occurs. The segment length (SEG.LEN) includes both data and sequence
space-occupying controls. When a SYN is present, then SEG.SEQ is the
sequence number of the SYN.<a href="#section-3.4-28" class="pilcrow"></a></p>
<section id="section-3.4.1">
<h4 id="name-initial-sequence-number-sel">
<a href="#section-3.4.1" class="section-number selfRef">3.4.1. </a><a href="#name-initial-sequence-number-sel" class="section-name selfRef">Initial Sequence Number Selection</a>
</h4>
<p id="section-3.4.1-1">
A connection is defined by a pair of
sockets. Connections can be reused. New instances of a connection will be referred to as
incarnations of the connection. The problem that arises from this is
-- "how does the TCP implementation identify duplicate segments from previous
incarnations of the connection?" This problem becomes apparent if the
connection is being opened and closed in quick succession, or if the
connection breaks with loss of memory and is then reestablished.
To support this, the TIME-WAIT state limits the rate of connection reuse,
while the initial sequence number selection described below further protects
against ambiguity about which incarnation of a connection an incoming packet
corresponds to.<a href="#section-3.4.1-1" class="pilcrow"></a></p>
<p id="section-3.4.1-2">
To avoid confusion, we must prevent segments from one incarnation of a
connection from being used while the same sequence numbers may still
be present in the network from an earlier incarnation. We want to
assure this even if a TCP endpoint loses all knowledge of the
sequence numbers it has been using. When new connections are created,
an initial sequence number (ISN) generator is employed that selects a
new 32-bit ISN. There are security issues that result if an off-path
attacker is able to predict or guess ISN values <span>[<a href="#RFC6528" class="xref">42</a>]</span>.<a href="#section-3.4.1-2" class="pilcrow"></a></p>
<p id="section-3.4.1-3">
TCP initial sequence numbers are generated from a number sequence that
monotonically increases until it wraps, known loosely as a "clock".
This clock is a 32-bit counter that typically increments at least once every
roughly 4 microseconds, although it is neither assumed to be realtime nor
precise, and need not persist across reboots. The clock component is intended
to ensure that with a Maximum Segment Lifetime (MSL), generated ISNs will be
unique since it cycles approximately every 4.55 hours, which is much longer
than the MSL. Please note that for modern networks that support high data
rates where the connection might start and quickly advance sequence numbers to
overlap within the MSL, it is recommended to implement the Timestamp Option as
mentioned later in <a href="#tcp_quiet_time_concept" class="xref">Section 3.4.3</a>.<a href="#section-3.4.1-3" class="pilcrow"></a></p>
<p id="section-3.4.1-4">
A TCP implementation <span class="bcp14">MUST</span> use the above type of "clock" for clock-driven selection of initial sequence numbers (MUST-8), and
<span class="bcp14">SHOULD</span> generate its initial sequence numbers with the expression:<a href="#section-3.4.1-4" class="pilcrow"></a></p>
<p id="section-3.4.1-5">
ISN = M + F(localip, localport, remoteip, remoteport, secretkey)<a href="#section-3.4.1-5" class="pilcrow"></a></p>
<p id="section-3.4.1-6">
where M is the 4 microsecond timer, and F() is a pseudorandom
function (PRF) of the connection's identifying parameters ("localip, localport, remoteip, remoteport") and a secret key ("secretkey") (SHLD-1). F() <span class="bcp14">MUST NOT</span> be computable from the outside (MUST-9), or an attacker could still guess at sequence numbers from the ISN used for some other connection. The PRF could be implemented as a cryptographic hash of the concatenation of the TCP connection parameters and some secret data. For discussion of the selection of a specific hash algorithm and management of the secret key data, please see <span><a href="https://www.rfc-editor.org/rfc/rfc6528#section-3" class="relref">Section 3</a> of [<a href="#RFC6528" class="xref">42</a>]</span>.<a href="#section-3.4.1-6" class="pilcrow"></a></p>
<p id="section-3.4.1-7">
For each connection there is a send sequence number and a receive
sequence number. The initial send sequence number (ISS) is chosen by
the data sending TCP peer, and the initial receive sequence number (IRS) is
learned during the connection-establishing procedure.<a href="#section-3.4.1-7" class="pilcrow"></a></p>
<p id="section-3.4.1-8">
For a connection to be established or initialized, the two TCP peers must
synchronize on each other's initial sequence numbers. This is done in
an exchange of connection-establishing segments carrying a control bit
called "SYN" (for synchronize) and the initial sequence numbers. As a
shorthand, segments carrying the SYN bit are also called "SYNs".
Hence, the solution requires a suitable mechanism for picking an
initial sequence number and a slightly involved handshake to exchange
the ISNs.<a href="#section-3.4.1-8" class="pilcrow"></a></p>
<p id="section-3.4.1-9">
The synchronization requires each side to send its own initial
sequence number and to receive a confirmation of it in acknowledgment
from the remote TCP peer. Each side must also receive the remote peer's
initial sequence number and send a confirming acknowledgment.<a href="#section-3.4.1-9" class="pilcrow"></a></p>
<div class="alignLeft art-text artwork" id="section-3.4.1-10">
<pre>
1) A --&gt; B SYN my sequence number is X
2) A &lt;-- B ACK your sequence number is X
3) A &lt;-- B SYN my sequence number is Y
4) A --&gt; B ACK your sequence number is Y
</pre><a href="#section-3.4.1-10" class="pilcrow"></a>
</div>
<p id="section-3.4.1-11">
Because steps 2 and 3 can be combined in a single message this is
called the three-way (or three message) handshake (3WHS).<a href="#section-3.4.1-11" class="pilcrow"></a></p>
<p id="section-3.4.1-12">
A 3WHS is necessary because sequence numbers are not
tied to a global clock in the network, and TCP implementations may have different
mechanisms for picking the ISNs. The receiver of the first SYN has
no way of knowing whether the segment was an old one or not,
unless it remembers the last sequence number used on the connection
(which is not always possible), and so it must ask the sender to
verify this SYN. The three-way handshake and the advantages of a
clock-driven scheme for ISN selection are discussed in <span>[<a href="#DS78" class="xref">69</a>]</span>.<a href="#section-3.4.1-12" class="pilcrow"></a></p>
</section>
<section id="section-3.4.2">
<h4 id="name-knowing-when-to-keep-quiet">
<a href="#section-3.4.2" class="section-number selfRef">3.4.2. </a><a href="#name-knowing-when-to-keep-quiet" class="section-name selfRef">Knowing When to Keep Quiet</a>
</h4>
<p id="section-3.4.2-1">
A theoretical problem exists where data could be corrupted due to confusion
between old segments in the network and new ones after a host reboots if the
same port numbers and sequence space are reused. The "quiet time"
concept discussed below addresses this, and the discussion of it is included
for situations where it might be relevant, although it is not felt to be
necessary in most current implementations. The problem was more relevant
earlier in the history of TCP. In practical use on the Internet today, the
error-prone conditions are sufficiently unlikely that it is safe to
ignore. Reasons why it is now negligible include: (a) ISS and ephemeral port
randomization have reduced likelihood of reuse of port numbers and sequence numbers
after reboots, (b) the effective MSL of the Internet has declined as links
have become faster, and (c) reboots often taking longer than an MSL anyways.<a href="#section-3.4.2-1" class="pilcrow"></a></p>
<p id="section-3.4.2-2">
To be sure that a TCP implementation does not create a segment carrying a
sequence number that may be duplicated by an old segment remaining in the
network, the TCP endpoint must keep quiet for an MSL before assigning any
sequence numbers upon starting up or recovering from a situation where memory
of sequence numbers in use was lost. For this specification the MSL is taken
to be 2 minutes. This is an engineering choice, and may be changed if
experience indicates it is desirable to do so. Note that if a TCP endpoint
is reinitialized in some sense, yet retains its memory of sequence numbers in
use, then it need not wait at all; it must only be sure to use sequence
numbers larger than those recently used.<a href="#section-3.4.2-2" class="pilcrow"></a></p>
</section>
<div id="tcp_quiet_time_concept">
<section id="section-3.4.3">
<h4 id="name-the-tcp-quiet-time-concept">
<a href="#section-3.4.3" class="section-number selfRef">3.4.3. </a><a href="#name-the-tcp-quiet-time-concept" class="section-name selfRef">The TCP Quiet Time Concept</a>
</h4>
<p id="section-3.4.3-1">
Hosts that for any reason lose
knowledge of the last sequence numbers transmitted on
each active (i.e., not closed) connection shall delay emitting any
TCP segments for at least the agreed MSL
in the internet system that the host is a part of. In the
paragraphs below, an explanation for this specification is given.
TCP implementers may violate the "quiet time" restriction, but only
at the risk of causing some old data to be accepted as new or new
data rejected as old duplicated data by some receivers in the internet
system.<a href="#section-3.4.3-1" class="pilcrow"></a></p>
<p id="section-3.4.3-2">
TCP endpoints consume sequence number space each time a segment is formed and
entered into the network output queue at a source host. The
duplicate detection and sequencing algorithm in TCP
relies on the unique binding of segment data to sequence space to
the extent that sequence numbers will not cycle through all 2<sup>32</sup>
values before the segment data bound to those sequence numbers has
been delivered and acknowledged by the receiver and all duplicate
copies of the segments have "drained" from the internet. Without
such an assumption, two distinct TCP segments could conceivably be
assigned the same or overlapping sequence numbers, causing confusion
at the receiver as to which data is new and which is old. Remember
that each segment is bound to as many consecutive sequence numbers
as there are octets of data and SYN or FIN flags in the segment.<a href="#section-3.4.3-2" class="pilcrow"></a></p>
<p id="section-3.4.3-3">
Under normal conditions, TCP implementations keep track of the next sequence number
to emit and the oldest awaiting acknowledgment so as to avoid
mistakenly reusing a sequence number before its first use has
been acknowledged. This alone does not guarantee that old duplicate
data is drained from the net, so the sequence space has been made
large to reduce the probability that a wandering duplicate will
cause trouble upon arrival. At 2 megabits/sec., it takes 4.5 hours
to use up 2<sup>32</sup> octets of sequence space. Since the maximum segment
lifetime in the net is not likely to exceed a few tens of seconds,
this is deemed ample protection for foreseeable nets, even if data
rates escalate to 10s of megabits/sec. At 100 megabits/sec., the
cycle time is 5.4 minutes, which may be a little short but still
within reason. Much higher data rates are possible today, with implications
described in the final paragraph of this subsection.<a href="#section-3.4.3-3" class="pilcrow"></a></p>
<p id="section-3.4.3-4">
The basic duplicate detection and sequencing algorithm in TCP can be
defeated, however, if a source TCP endpoint does not have any memory of the
sequence numbers it last used on a given connection. For example, if
the TCP implementation were to start all connections with sequence number 0, then
upon the host rebooting, a TCP peer might re-form an earlier
connection (possibly after half-open connection resolution) and emit
packets with sequence numbers identical to or overlapping with
packets still in the network, which were emitted on an earlier
incarnation of the same connection. In the absence of knowledge
about the sequence numbers used on a particular connection, the TCP
specification recommends that the source delay for MSL seconds
before emitting segments on the connection, to allow time for
segments from the earlier connection incarnation to drain from the
system.<a href="#section-3.4.3-4" class="pilcrow"></a></p>
<p id="section-3.4.3-5">
Even hosts that can remember the time of day and use it to select
initial sequence number values are not immune from this problem
(i.e., even if time of day is used to select an initial sequence
number for each new connection incarnation).<a href="#section-3.4.3-5" class="pilcrow"></a></p>
<p id="section-3.4.3-6">
Suppose, for example, that a connection is opened starting with
sequence number S. Suppose that this connection is not used much
and that eventually the initial sequence number function (ISN(t))
takes on a value equal to the sequence number, say S1, of the last
segment sent by this TCP endpoint on a particular connection. Now suppose,
at this instant, the host reboots and establishes a new
incarnation of the connection. The initial sequence number chosen is
S1 = ISN(t) -- last used sequence number on old incarnation of
connection! If the recovery occurs quickly enough, any old
duplicates in the net bearing sequence numbers in the neighborhood
of S1 may arrive and be treated as new packets by the receiver of
the new incarnation of the connection.<a href="#section-3.4.3-6" class="pilcrow"></a></p>
<p id="section-3.4.3-7">
The problem is that the recovering host may not know for how long it
was down between rebooting nor does it know whether there are still old duplicates in
the system from earlier connection incarnations.<a href="#section-3.4.3-7" class="pilcrow"></a></p>
<p id="section-3.4.3-8">
One way to deal with this problem is to deliberately delay emitting
segments for one MSL after recovery from a reboot -- this is the "quiet
time" specification. Hosts that prefer to avoid waiting and are
willing to risk possible confusion of old and new packets at a given
destination may choose not to wait for the "quiet time".
Implementers may provide TCP users with the ability to select on a
connection-by-connection basis whether to wait after a reboot, or may
informally implement the "quiet time" for all connections.
Obviously, even where a user selects to "wait", this is not
necessary after the host has been "up" for at least MSL seconds.<a href="#section-3.4.3-8" class="pilcrow"></a></p>
<p id="section-3.4.3-9">
To summarize: every segment emitted occupies one or more sequence
numbers in the sequence space, and the numbers occupied by a segment are
"busy" or "in use" until MSL seconds have passed. Upon rebooting, a
block of space-time is occupied by the octets and SYN or FIN flags of any potentially still in-flight
segments. If a new connection is started too soon and uses any of the
sequence numbers in the space-time footprint of those potentially still in-flight segments of
the previous connection incarnation, there is a potential sequence
number overlap area that could cause confusion at the receiver.<a href="#section-3.4.3-9" class="pilcrow"></a></p>
<p id="section-3.4.3-10">
High-performance cases will have shorter cycle times than those in the
megabits per second that the base TCP design described above considers.
At 1 Gbps, the cycle time is 34 seconds, only 3 seconds at 10 Gbps, and
around a third of a second at 100 Gbps. In these higher-performance cases,
TCP Timestamp Options and Protection Against Wrapped Sequences (PAWS) <span>[<a href="#RFC7323" class="xref">47</a>]</span> provide the needed capability to detect and discard old
duplicates.<a href="#section-3.4.3-10" class="pilcrow"></a></p>
</section>
</div>
</section>
</div>
<section id="section-3.5">
<h3 id="name-establishing-a-connection">
<a href="#section-3.5" class="section-number selfRef">3.5. </a><a href="#name-establishing-a-connection" class="section-name selfRef">Establishing a Connection</a>
</h3>
<p id="section-3.5-1">
The "three-way handshake" is the procedure used to establish a
connection. This procedure normally is initiated by one TCP peer and
responded to by another TCP peer. The procedure also works if two TCP peers
simultaneously initiate the procedure. When simultaneous open
occurs, each TCP peer receives a SYN segment that carries no
acknowledgment after it has sent a SYN. Of course, the arrival of
an old duplicate SYN segment can potentially make it appear, to the
recipient, that a simultaneous connection initiation is in progress.
Proper use of "reset" segments can disambiguate these cases.<a href="#section-3.5-1" class="pilcrow"></a></p>
<p id="section-3.5-2">
Several examples of connection initiation follow. Although these
examples do not show connection synchronization using data-carrying
segments, this is perfectly legitimate, so long as the receiving TCP endpoint
doesn't deliver the data to the user until it is clear the data is
valid (e.g., the data is buffered at the receiver until the
connection reaches the ESTABLISHED state, given that the three-way handshake
reduces the possibility of false connections). It is
a trade-off between memory and messages to provide
information for this checking.<a href="#section-3.5-2" class="pilcrow"></a></p>
<p id="section-3.5-3">
The simplest 3WHS is shown in <a href="#handshake" class="xref">Figure 6</a>. The
figures should be interpreted in the following way. Each line is
numbered for reference purposes. Right arrows (--&gt;) indicate
departure of a TCP segment from TCP Peer A to TCP Peer B or arrival of a
segment at B from A. Left arrows (&lt;--) indicate the reverse.
Ellipses (...) indicate a segment that is still in the network
(delayed).
Comments appear in parentheses. TCP connection states represent the state AFTER
the departure or arrival of the segment (whose contents are shown in
the center of each line). Segment contents are shown in abbreviated
form, with sequence number, control flags, and ACK field. Other
fields such as window, addresses, lengths, and text have been left out
in the interest of clarity.<a href="#section-3.5-3" class="pilcrow"></a></p>
<span id="name-basic-three-way-handshake-f"></span><div id="handshake">
<figure id="figure-6">
<div class="alignLeft art-text artwork" id="section-3.5-4.1">
<pre>
TCP Peer A TCP Peer B
1. CLOSED LISTEN
2. SYN-HUG-SENT --&gt; &lt;SEQ=100&gt;&lt;CTL=SYN,HUG&gt; --&gt; SYN-HUG-RECEIVED
3. ABOUT-TO-HUG &lt;-- &lt;SEQ=300&gt;&lt;ACK=101&gt;&lt;CTL=SYN,HUG,ACK&gt; &lt;-- SYN-HUG-RECEIVED
4. ABOUT-TO-HUG --&gt; &lt;SEQ=101&gt;&lt;ACK=301&gt;&lt;CTL=ACK,HUG&gt; --&gt; ABOUT-TO-HUG
5. HUGGING --&gt; &lt;SEQ=101&gt;&lt;ACK=301&gt;&lt;CTL=HUG&gt;&lt;DATA&gt; --&gt; HUGGING
</pre>
</div>
<figcaption><a href="#figure-6" class="selfRef">Figure 6</a>:
<a href="#name-basic-three-way-handshake-f" class="selfRef">Basic Three-Way Handshake for hugging</a>
</figcaption></figure>
</div>
<p id="section-3.5-5">
In line 2 of <a href="#handshake" class="xref">Figure 6</a>, TCP Peer A begins by sending a SYN segment
indicating that it will use sequence numbers starting with sequence
number 100. In line 3, TCP Peer B sends a SYN and acknowledges the SYN it
received from TCP Peer A. Note that the acknowledgment field indicates TCP Peer
B is now expecting to hear sequence 101, acknowledging the SYN that
occupied sequence 100.<a href="#section-3.5-5" class="pilcrow"></a></p>
<p id="section-3.5-6">
At line 4, TCP Peer A responds with an empty segment containing an ACK for
TCP Peer B's SYN; and in line 5, TCP Peer A sends some data. Note that the
sequence number of the segment in line 5 is the same as in line 4
because the ACK does not occupy sequence number space (if it did, we
would wind up ACKing ACKs!).<a href="#section-3.5-6" class="pilcrow"></a></p>
<p id="section-3.5-7">
Simultaneous initiation is only slightly more complex, as is shown in
<a href="#simul_connect" class="xref">Figure 7</a>. Each TCP peer's connection state cycles from CLOSED to SYN-SENT to SYN-RECEIVED to ESTABLISHED.<a href="#section-3.5-7" class="pilcrow"></a></p>
<span id="name-simultaneous-connection-syn"></span><div id="simul_connect">
<figure id="figure-7">
<div class="alignLeft art-text artwork" id="section-3.5-8.1">
<pre>
TCP Peer A TCP Peer B
1. CLOSED CLOSED
2. SYN-SENT --&gt; &lt;SEQ=100&gt;&lt;CTL=SYN&gt; ...
3. SYN-RECEIVED &lt;-- &lt;SEQ=300&gt;&lt;CTL=SYN&gt; &lt;-- SYN-SENT
4. ... &lt;SEQ=100&gt;&lt;CTL=SYN&gt; --&gt; SYN-RECEIVED
5. SYN-RECEIVED --&gt; &lt;SEQ=100&gt;&lt;ACK=301&gt;&lt;CTL=SYN,ACK&gt; ...
6. ESTABLISHED &lt;-- &lt;SEQ=300&gt;&lt;ACK=101&gt;&lt;CTL=SYN,ACK&gt; &lt;-- SYN-RECEIVED
7. ... &lt;SEQ=100&gt;&lt;ACK=301&gt;&lt;CTL=SYN,ACK&gt; --&gt; ESTABLISHED
</pre>
</div>
<figcaption><a href="#figure-7" class="selfRef">Figure 7</a>:
<a href="#name-simultaneous-connection-syn" class="selfRef">Simultaneous Connection Synchronization</a>
</figcaption></figure>
</div>
<p id="section-3.5-9">
A TCP implementation <span class="bcp14">MUST</span> support simultaneous open attempts (MUST-10).<a href="#section-3.5-9" class="pilcrow"></a></p>
<p id="section-3.5-10">
Note that a TCP implementation <span class="bcp14">MUST</span> keep track of whether a
connection has reached SYN-RECEIVED state as the result of a
passive OPEN or an active OPEN (MUST-11).<a href="#section-3.5-10" class="pilcrow"></a></p>
<p id="section-3.5-11">
The principal reason for the three-way handshake is to prevent old
duplicate connection initiations from causing confusion. To deal with
this, a special control message, reset, is specified. If the
receiving TCP peer is in a non-synchronized state (i.e., SYN-SENT,
SYN-RECEIVED), it returns to LISTEN on receiving an acceptable reset.
If the TCP peer is in one of the synchronized states (ESTABLISHED,
FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT), it
aborts the connection and informs its user. We discuss this latter
case under "half-open" connections below.<a href="#section-3.5-11" class="pilcrow"></a></p>
<span id="name-recovery-from-old-duplicate"></span><div id="dup_syn">
<figure id="figure-8">
<div class="alignLeft art-text artwork" id="section-3.5-12.1">
<pre>
TCP Peer A TCP Peer B
1. CLOSED LISTEN
2. SYN-SENT --&gt; &lt;SEQ=100&gt;&lt;CTL=SYN&gt; ...
3. (duplicate) ... &lt;SEQ=90&gt;&lt;CTL=SYN&gt; --&gt; SYN-RECEIVED
4. SYN-SENT &lt;-- &lt;SEQ=300&gt;&lt;ACK=91&gt;&lt;CTL=SYN,ACK&gt; &lt;-- SYN-RECEIVED
5. SYN-SENT --&gt; &lt;SEQ=91&gt;&lt;CTL=RST&gt; --&gt; LISTEN
6. ... &lt;SEQ=100&gt;&lt;CTL=SYN&gt; --&gt; SYN-RECEIVED
7. ESTABLISHED &lt;-- &lt;SEQ=400&gt;&lt;ACK=101&gt;&lt;CTL=SYN,ACK&gt; &lt;-- SYN-RECEIVED
8. ESTABLISHED --&gt; &lt;SEQ=101&gt;&lt;ACK=401&gt;&lt;CTL=ACK&gt; --&gt; ESTABLISHED
</pre>
</div>
<figcaption><a href="#figure-8" class="selfRef">Figure 8</a>:
<a href="#name-recovery-from-old-duplicate" class="selfRef">Recovery from Old Duplicate SYN</a>
</figcaption></figure>
</div>
<p id="section-3.5-13">
As a simple example of recovery from old duplicates, consider
<a href="#dup_syn" class="xref">Figure 8</a>. At line 3, an old duplicate SYN arrives at TCP Peer B. TCP Peer B
cannot tell that this is an old duplicate, so it responds normally
(line 4). TCP Peer A detects that the ACK field is incorrect and returns a
RST (reset) with its SEQ field selected to make the segment
believable. TCP Peer B, on receiving the RST, returns to the LISTEN state.
When the original SYN finally arrives at line 6, the
synchronization proceeds normally. If the SYN at line 6 had arrived
before the RST, a more complex exchange might have occurred with RSTs
sent in both directions.<a href="#section-3.5-13" class="pilcrow"></a></p>
<section id="section-3.5.1">
<h4 id="name-half-open-connections-and-o">
<a href="#section-3.5.1" class="section-number selfRef">3.5.1. </a><a href="#name-half-open-connections-and-o" class="section-name selfRef">Half-Open Connections and Other Anomalies</a>
</h4>
<p id="section-3.5.1-1">
An established connection is said to be "half-open" if one of the
TCP peers has closed or aborted the connection at its end without the
knowledge of the other, or if the two ends of the connection have
become desynchronized owing to a failure or reboot that resulted in loss of
memory. Such connections will automatically become reset if an
attempt is made to send data in either direction. However, half-open
connections are expected to be unusual.<a href="#section-3.5.1-1" class="pilcrow"></a></p>
<p id="section-3.5.1-2">
If at site A the connection no longer exists, then an attempt by the
user at site B to send any data on it will result in the site B TCP endpoint
receiving a reset control message. Such a message indicates to the
site B TCP endpoint that something is wrong, and it is expected to abort the
connection.<a href="#section-3.5.1-2" class="pilcrow"></a></p>
<p id="section-3.5.1-3">
Assume that two user processes A and B are communicating with one
another when a failure or reboot occurs causing loss of memory to A's TCP implementation.
Depending on the operating system supporting A's TCP implementation, it is likely
that some error recovery mechanism exists. When the TCP endpoint is up again,
A is likely to start again from the beginning or from a recovery
point. As a result, A will probably try to OPEN the connection again
or try to SEND on the connection it believes open. In the latter
case, it receives the error message "connection not open" from the
local (A's) TCP implementation. In an attempt to establish the connection, A's TCP implementation
will send a segment containing SYN. This scenario leads to the
example shown in <a href="#half_open" class="xref">Figure 9</a>. After TCP Peer A reboots, the user attempts to
reopen the connection. TCP Peer B, in the meantime, thinks the connection
is open.<a href="#section-3.5.1-3" class="pilcrow"></a></p>
<span id="name-half-open-connection-discov"></span><div id="half_open">
<figure id="figure-9">
<div class="alignLeft art-text artwork" id="section-3.5.1-4.1">
<pre>
TCP Peer A TCP Peer B
1. (REBOOT) (send 300,receive 100)
2. CLOSED ESTABLISHED
3. SYN-SENT --&gt; &lt;SEQ=400&gt;&lt;CTL=SYN&gt; --&gt; (??)
4. (!!) &lt;-- &lt;SEQ=300&gt;&lt;ACK=100&gt;&lt;CTL=ACK&gt; &lt;-- ESTABLISHED
5. SYN-SENT --&gt; &lt;SEQ=100&gt;&lt;CTL=RST&gt; --&gt; (Abort!!)
6. SYN-SENT CLOSED
7. SYN-SENT --&gt; &lt;SEQ=400&gt;&lt;CTL=SYN&gt; --&gt;
</pre>
</div>
<figcaption><a href="#figure-9" class="selfRef">Figure 9</a>:
<a href="#name-half-open-connection-discov" class="selfRef">Half-Open Connection Discovery</a>
</figcaption></figure>
</div>
<p id="section-3.5.1-5">
When the SYN arrives at line 3, TCP Peer B, being in a synchronized state,
and the incoming segment outside the window, responds with an
acknowledgment indicating what sequence it next expects to hear (ACK
100). TCP Peer A sees that this segment does not acknowledge anything it
sent and, being unsynchronized, sends a reset (RST) because it has
detected a half-open connection. TCP Peer B aborts at line 5. TCP Peer A will
continue to try to establish the connection; the problem is now
reduced to the basic three-way handshake of <a href="#handshake" class="xref">Figure 6</a>.<a href="#section-3.5.1-5" class="pilcrow"></a></p>
<p id="section-3.5.1-6">
An interesting alternative case occurs when TCP Peer A reboots and TCP Peer B
tries to send data on what it thinks is a synchronized connection.
This is illustrated in <a href="#crash" class="xref">Figure 10</a>. In this case, the data arriving at
TCP Peer A from TCP Peer B (line 2) is unacceptable because no such connection
exists, so TCP Peer A sends a RST. The RST is acceptable so TCP Peer B
processes it and aborts the connection.<a href="#section-3.5.1-6" class="pilcrow"></a></p>
<span id="name-active-side-causes-half-ope"></span><div id="crash">
<figure id="figure-10">
<div class="alignLeft art-text artwork" id="section-3.5.1-7.1">
<pre>
TCP Peer A TCP Peer B
1. (REBOOT) (send 300,receive 100)
2. (??) &lt;-- &lt;SEQ=300&gt;&lt;ACK=100&gt;&lt;DATA=10&gt;&lt;CTL=ACK&gt; &lt;-- ESTABLISHED
3. --&gt; &lt;SEQ=100&gt;&lt;CTL=RST&gt; --&gt; (ABORT!!)
</pre>
</div>
<figcaption><a href="#figure-10" class="selfRef">Figure 10</a>:
<a href="#name-active-side-causes-half-ope" class="selfRef">Active Side Causes Half-Open Connection Discovery</a>
</figcaption></figure>
</div>
<p id="section-3.5.1-8">
In <a href="#passive_reset" class="xref">Figure 11</a>, two TCP Peers A and B with passive connections
waiting for SYN are depicted. An old duplicate arriving at TCP Peer B (line 2) stirs B
into action. A SYN-ACK is returned (line 3) and causes TCP A to
generate a RST (the ACK in line 3 is not acceptable). TCP Peer B accepts
the reset and returns to its passive LISTEN state.<a href="#section-3.5.1-8" class="pilcrow"></a></p>
<span id="name-old-duplicate-syn-initiates"></span><div id="passive_reset">
<figure id="figure-11">
<div class="alignLeft art-text artwork" id="section-3.5.1-9.1">
<pre>
TCP Peer A TCP Peer B
1. LISTEN LISTEN
2. ... &lt;SEQ=Z&gt;&lt;CTL=SYN&gt; --&gt; SYN-RECEIVED
3. (??) &lt;-- &lt;SEQ=X&gt;&lt;ACK=Z+1&gt;&lt;CTL=SYN,ACK&gt; &lt;-- SYN-RECEIVED
4. --&gt; &lt;SEQ=Z+1&gt;&lt;CTL=RST&gt; --&gt; (return to LISTEN!)
5. LISTEN LISTEN
</pre>
</div>
<figcaption><a href="#figure-11" class="selfRef">Figure 11</a>:
<a href="#name-old-duplicate-syn-initiates" class="selfRef">Old Duplicate SYN Initiates a Reset on Two Passive Sockets</a>
</figcaption></figure>
</div>
<p id="section-3.5.1-10">
A variety of other cases are possible, all of which are accounted for
by the following rules for RST generation and processing.<a href="#section-3.5.1-10" class="pilcrow"></a></p>
</section>
<section id="section-3.5.2">
<h4 id="name-reset-generation">
<a href="#section-3.5.2" class="section-number selfRef">3.5.2. </a><a href="#name-reset-generation" class="section-name selfRef">Reset Generation</a>
</h4>
<p id="section-3.5.2-1">
A TCP user or application can issue a reset on a connection at any time, though reset events are also generated by the protocol itself when various error conditions occur, as described below. The side of a connection issuing a reset should enter the TIME-WAIT state, as this generally helps to reduce the load on busy servers for reasons described in <span>[<a href="#FTY99" class="xref">70</a>]</span>.<a href="#section-3.5.2-1" class="pilcrow"></a></p>
<p id="section-3.5.2-2">
As a general rule, reset (RST) is sent whenever a segment arrives
that apparently is not intended for the current connection. A reset
must not be sent if it is not clear that this is the case.<a href="#section-3.5.2-2" class="pilcrow"></a></p>
<p id="section-3.5.2-3">
There are three groups of states:<a href="#section-3.5.2-3" class="pilcrow"></a></p>
<ol start="1" type="1" class="normal type-1" id="section-3.5.2-4">
<li id="section-3.5.2-4.1">
<p id="section-3.5.2-4.1.1">
If the connection does not exist (CLOSED), then a reset is sent
in response to any incoming segment except another reset. A SYN
segment that does not match an existing connection is rejected
by this means.<a href="#section-3.5.2-4.1.1" class="pilcrow"></a></p>
<p id="section-3.5.2-4.1.2">
If the incoming segment has the ACK bit set, the reset takes its
sequence number from the ACK field of the segment; otherwise, the
reset has sequence number zero and the ACK field is set to the sum
of the sequence number and segment length of the incoming segment.
The connection remains in the CLOSED state.<a href="#section-3.5.2-4.1.2" class="pilcrow"></a></p>
</li>
<li id="section-3.5.2-4.2">
<p id="section-3.5.2-4.2.1">
If the connection is in any non-synchronized state (LISTEN,
SYN-SENT, SYN-RECEIVED), and the incoming segment acknowledges
something not yet sent (the segment carries an unacceptable ACK), or
if an incoming segment has a security level or compartment (<a href="#seccomp" class="xref">Appendix A.1</a>) that
does not exactly match the level and compartment requested for the
connection, a reset is sent.<a href="#section-3.5.2-4.2.1" class="pilcrow"></a></p>
<p id="section-3.5.2-4.2.2">
If the incoming segment has an ACK field, the reset takes its
sequence number from the ACK field of the segment; otherwise, the
reset has sequence number zero and the ACK field is set to the sum
of the sequence number and segment length of the incoming segment.
The connection remains in the same state.<a href="#section-3.5.2-4.2.2" class="pilcrow"></a></p>
</li>
<li id="section-3.5.2-4.3">
<p id="section-3.5.2-4.3.1">
If the connection is in a synchronized state (ESTABLISHED,
FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT),
any unacceptable segment (out-of-window sequence number or
unacceptable acknowledgment number) must be responded to with an empty
acknowledgment segment (without any user data) containing the current send sequence number
and an acknowledgment indicating the next sequence number expected
to be received, and the connection remains in the same state.<a href="#section-3.5.2-4.3.1" class="pilcrow"></a></p>
<p id="section-3.5.2-4.3.2">
If an incoming segment has a security level or compartment
that does not exactly match the level and compartment
requested for the connection, a reset is sent and
the connection goes to the CLOSED state. The reset takes its sequence
number from the ACK field of the incoming segment.<a href="#section-3.5.2-4.3.2" class="pilcrow"></a></p>
</li>
</ol>
</section>
<section id="section-3.5.3">
<h4 id="name-reset-processing">
<a href="#section-3.5.3" class="section-number selfRef">3.5.3. </a><a href="#name-reset-processing" class="section-name selfRef">Reset Processing</a>
</h4>
<p id="section-3.5.3-1">
In all states except SYN-SENT, all reset (RST) segments are validated
by checking their SEQ fields. A reset is valid if its sequence number
is in the window. In the SYN-SENT state (a RST received in response
to an initial SYN), the RST is acceptable if the ACK field
acknowledges the SYN.<a href="#section-3.5.3-1" class="pilcrow"></a></p>
<p id="section-3.5.3-2">
The receiver of a RST first validates it, then changes state. If the
receiver was in the LISTEN state, it ignores it. If the receiver was
in SYN-RECEIVED state and had previously been in the LISTEN state,
then the receiver returns to the LISTEN state; otherwise, the receiver
aborts the connection and goes to the CLOSED state. If the receiver
was in any other state, it aborts the connection and advises the user
and goes to the CLOSED state.<a href="#section-3.5.3-2" class="pilcrow"></a></p>
<p id="section-3.5.3-3">
TCP implementations <span class="bcp14">SHOULD</span> allow a received RST segment to include data (SHLD-2).
It has been suggested that a RST segment could contain diagnostic data that
explains the cause of the RST. No standard has yet been established for such data.<a href="#section-3.5.3-3" class="pilcrow"></a></p>
</section>
</section>
<section id="section-3.6">
<h3 id="name-closing-a-connection">
<a href="#section-3.6" class="section-number selfRef">3.6. </a><a href="#name-closing-a-connection" class="section-name selfRef">Closing a Connection</a>
</h3>
<p id="section-3.6-1">
CLOSE is an operation meaning "I have no more data to send." The
notion of closing a full-duplex connection is subject to ambiguous
interpretation, of course, since it may not be obvious how to treat
the receiving side of the connection. We have chosen to treat CLOSE
in a simplex fashion. The user who CLOSEs may continue to RECEIVE
until the TCP receiver is told that the remote peer has CLOSED also. Thus, a program
could initiate several SENDs followed by a CLOSE, and then continue to
RECEIVE until signaled that a RECEIVE failed because the remote peer
has CLOSED. The TCP implementation will signal a user, even if no
RECEIVEs are outstanding, that the remote peer has closed, so the user
can terminate their side gracefully. A TCP implementation will reliably deliver all
buffers SENT before the connection was CLOSED so a user who expects no
data in return need only wait to hear the connection was CLOSED
successfully to know that all their data was received at the destination
TCP endpoint. Users must keep reading connections they close for sending until
the TCP implementation indicates there is no more data.<a href="#section-3.6-1" class="pilcrow"></a></p>
<p id="section-3.6-2">
There are essentially three cases:<a href="#section-3.6-2" class="pilcrow"></a></p>
<span class="break"></span><dl class="olPercent" id="section-3.6-3">
<dt>1)</dt>
<dd id="section-3.6-3.1">
The user initiates by telling the TCP implementation to CLOSE the connection (TCP Peer A in <a href="#normal_close" class="xref">Figure 12</a>).<a href="#section-3.6-3.1" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt>2)</dt>
<dd id="section-3.6-3.2">
The remote TCP endpoint initiates by sending a FIN control signal (TCP Peer B in <a href="#normal_close" class="xref">Figure 12</a>).<a href="#section-3.6-3.2" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt>3)</dt>
<dd id="section-3.6-3.3">
Both users CLOSE simultaneously (<a href="#simul_close" class="xref">Figure 13</a>).<a href="#section-3.6-3.3" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
</dl>
<span class="break"></span><dl class="dlParallel" id="section-3.6-4">
<dt id="section-3.6-4.1">Case 1:</dt>
<dd style="margin-left: 1.5em" id="section-3.6-4.2">
<p id="section-3.6-4.2.1">
Local user initiates the close<a href="#section-3.6-4.2.1" class="pilcrow"></a></p>
<p id="section-3.6-4.2.2">
In this case, a FIN segment can be constructed and placed on the
outgoing segment queue. No further SENDs from the user will be
accepted by the TCP implementation, and it enters the FIN-WAIT-1 state. RECEIVEs
are allowed in this state. All segments preceding and including FIN
will be retransmitted until acknowledged. When the other TCP peer has
both acknowledged the FIN and sent a FIN of its own, the first TCP peer
can ACK this FIN. Note that a TCP endpoint receiving a FIN will ACK but not
send its own FIN until its user has CLOSED the connection also.<a href="#section-3.6-4.2.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.6-4.3">Case 2:</dt>
<dd style="margin-left: 1.5em" id="section-3.6-4.4">
<p id="section-3.6-4.4.1">
TCP endpoint receives a FIN from the network<a href="#section-3.6-4.4.1" class="pilcrow"></a></p>
<p id="section-3.6-4.4.2">
If an unsolicited FIN arrives from the network, the receiving TCP endpoint
can ACK it and tell the user that the connection is closing. The
user will respond with a CLOSE, upon which the TCP endpoint can send a FIN to
the other TCP peer after sending any remaining data. The TCP endpoint then waits
until its own FIN is acknowledged whereupon it deletes the
connection. If an ACK is not forthcoming, after the user timeout
the connection is aborted and the user is told.<a href="#section-3.6-4.4.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.6-4.5">Case 3:</dt>
<dd style="margin-left: 1.5em" id="section-3.6-4.6">
<p id="section-3.6-4.6.1">
Both users close simultaneously<a href="#section-3.6-4.6.1" class="pilcrow"></a></p>
<p id="section-3.6-4.6.2">
A simultaneous CLOSE by users at both ends of a connection causes
FIN segments to be exchanged (<a href="#simul_close" class="xref">Figure 13</a>). When all segments preceding the FINs
have been processed and acknowledged, each TCP peer can ACK the FIN it
has received. Both will, upon receiving these ACKs, delete the
connection.<a href="#section-3.6-4.6.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
</dl>
<span id="name-normal-close-sequence"></span><div id="normal_close">
<figure id="figure-12">
<div class="alignLeft art-text artwork" id="section-3.6-5.1">
<pre>
TCP Peer A TCP Peer B
1. ESTABLISHED ESTABLISHED
2. (Close)
FIN-WAIT-1 --&gt; &lt;SEQ=100&gt;&lt;ACK=300&gt;&lt;CTL=FIN,ACK&gt; --&gt; CLOSE-WAIT
3. FIN-WAIT-2 &lt;-- &lt;SEQ=300&gt;&lt;ACK=101&gt;&lt;CTL=ACK&gt; &lt;-- CLOSE-WAIT
4. (Close)
TIME-WAIT &lt;-- &lt;SEQ=300&gt;&lt;ACK=101&gt;&lt;CTL=FIN,ACK&gt; &lt;-- LAST-ACK
5. TIME-WAIT --&gt; &lt;SEQ=101&gt;&lt;ACK=301&gt;&lt;CTL=ACK&gt; --&gt; CLOSED
6. (2 MSL)
CLOSED
</pre>
</div>
<figcaption><a href="#figure-12" class="selfRef">Figure 12</a>:
<a href="#name-normal-close-sequence" class="selfRef">Normal Close Sequence</a>
</figcaption></figure>
</div>
<span id="name-simultaneous-close-sequence"></span><div id="simul_close">
<figure id="figure-13">
<div class="alignLeft art-text artwork" id="section-3.6-6.1">
<pre>
TCP Peer A TCP Peer B
1. ESTABLISHED ESTABLISHED
2. (Close) (Close)
FIN-WAIT-1 --&gt; &lt;SEQ=100&gt;&lt;ACK=300&gt;&lt;CTL=FIN,ACK&gt; ... FIN-WAIT-1
&lt;-- &lt;SEQ=300&gt;&lt;ACK=100&gt;&lt;CTL=FIN,ACK&gt; &lt;--
... &lt;SEQ=100&gt;&lt;ACK=300&gt;&lt;CTL=FIN,ACK&gt; --&gt;
3. CLOSING --&gt; &lt;SEQ=101&gt;&lt;ACK=301&gt;&lt;CTL=ACK&gt; ... CLOSING
&lt;-- &lt;SEQ=301&gt;&lt;ACK=101&gt;&lt;CTL=ACK&gt; &lt;--
... &lt;SEQ=101&gt;&lt;ACK=301&gt;&lt;CTL=ACK&gt; --&gt;
4. TIME-WAIT TIME-WAIT
(2 MSL) (2 MSL)
CLOSED CLOSED
</pre>
</div>
<figcaption><a href="#figure-13" class="selfRef">Figure 13</a>:
<a href="#name-simultaneous-close-sequence" class="selfRef">Simultaneous Close Sequence</a>
</figcaption></figure>
</div>
<p id="section-3.6-7">
A TCP connection may terminate in two ways: (1) the normal
TCP close sequence using a FIN handshake (<a href="#normal_close" class="xref">Figure 12</a>), and (2) an "abort"
in which one or more RST segments are sent and the
connection state is immediately discarded. If the local
TCP connection is closed by the remote side due to a FIN or
RST received from the remote side, then the local
application <span class="bcp14">MUST</span> be informed whether it closed normally or
was aborted (MUST-12).<a href="#section-3.6-7" class="pilcrow"></a></p>
<p id="section-3.6-8"></p>
<section id="section-3.6.1">
<h4 id="name-half-closed-connections">
<a href="#section-3.6.1" class="section-number selfRef">3.6.1. </a><a href="#name-half-closed-connections" class="section-name selfRef">Half-Closed Connections</a>
</h4>
<p id="section-3.6.1-1">
The normal TCP close sequence delivers buffered data
reliably in both directions. Since the two directions of a
TCP connection are closed independently, it is possible for
a connection to be "half closed", i.e., closed in only one
direction, and a host is permitted to continue sending data
in the open direction on a half-closed connection.<a href="#section-3.6.1-1" class="pilcrow"></a></p>
<p id="section-3.6.1-2">
A host <span class="bcp14">MAY</span> implement a "half-duplex" TCP close sequence, so
that an application that has called CLOSE cannot continue to
read data from the connection (MAY-1). If such a host issues a
CLOSE call while received data is still pending in the TCP connection, or
if new data is received after CLOSE is called, its TCP implementation
<span class="bcp14">SHOULD</span> send a RST to show that data was lost (SHLD-3). See <span>[<a href="#RFC2525" class="xref">23</a>], <a href="https://www.rfc-editor.org/rfc/rfc2525#section-2.17" class="relref">Section 2.17</a></span> for discussion.<a href="#section-3.6.1-2" class="pilcrow"></a></p>
<p id="section-3.6.1-3">
When a connection is closed actively, it <span class="bcp14">MUST</span> linger in the
TIME-WAIT state for a time 2xMSL (Maximum Segment Lifetime) (MUST-13).
However, it <span class="bcp14">MAY</span> accept a new SYN from the remote TCP endpoint to
reopen the connection directly from TIME-WAIT state (MAY-2), if it:<a href="#section-3.6.1-3" class="pilcrow"></a></p>
<span class="break"></span><dl class="olPercent" id="section-3.6.1-4">
<dt>(1)</dt>
<dd id="section-3.6.1-4.1">
assigns its initial sequence number for the new
connection to be larger than the largest sequence
number it used on the previous connection incarnation,
and<a href="#section-3.6.1-4.1" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt>(2)</dt>
<dd id="section-3.6.1-4.2">
returns to TIME-WAIT state if the SYN turns out to be
an old duplicate.<a href="#section-3.6.1-4.2" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-3.6.1-5">
When the TCP Timestamp Options are available, an improved algorithm is
described in <span>[<a href="#RFC6191" class="xref">40</a>]</span> in order to support higher connection
establishment rates. This algorithm for reducing TIME-WAIT is a Best Current
Practice that <span class="bcp14">SHOULD</span> be implemented since Timestamp Options are commonly used,
and using them to reduce TIME-WAIT provides benefits for busy Internet servers (SHLD-4).<a href="#section-3.6.1-5" class="pilcrow"></a></p>
</section>
</section>
<section id="section-3.7">
<h3 id="name-segmentation">
<a href="#section-3.7" class="section-number selfRef">3.7. </a><a href="#name-segmentation" class="section-name selfRef">Segmentation</a>
</h3>
<p id="section-3.7-1"> The term "segmentation" refers to the activity TCP performs when ingesting a stream of bytes from a sending application and packetizing that stream of bytes into TCP segments. Individual TCP segments often do not correspond one-for-one to individual send (or socket write) calls from the application. Applications may perform writes at the granularity of messages in the upper-layer protocol, but TCP guarantees no correlation between the boundaries of TCP segments sent and received and the boundaries of the read or write buffers of user application data. In some specific protocols, such as Remote Direct Memory Access (RDMA) using Direct Data Placement (DDP) and Marker PDU Aligned Framing (MPA) <span>[<a href="#RFC5044" class="xref">34</a>]</span>, there are performance optimizations possible when the relation between TCP segments and application data units can be controlled, and MPA includes a specific mechanism for detecting and verifying this relationship between TCP segments and application message data structures, but this is specific to applications like RDMA. In general, multiple goals influence the sizing of TCP segments created by a TCP implementation.<a href="#section-3.7-1" class="pilcrow"></a></p>
<p id="section-3.7-2">Goals driving the sending of larger segments include:<a href="#section-3.7-2" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.7-3.1">Reducing the number of packets in flight within the network.<a href="#section-3.7-3.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.7-3.2">Increasing processing efficiency and potential performance by enabling a smaller number of interrupts and inter-layer interactions.<a href="#section-3.7-3.2" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.7-3.3">Limiting the overhead of TCP headers.<a href="#section-3.7-3.3" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.7-4">Note that the performance benefits of sending larger segments may decrease as the size increases, and there may be boundaries where advantages are reversed. For instance, on some implementation architectures, 1025 bytes within a segment could lead to worse performance than 1024 bytes, due purely to data alignment on copy operations.<a href="#section-3.7-4" class="pilcrow"></a></p>
<p id="section-3.7-5">Goals driving the sending of smaller segments include:<a href="#section-3.7-5" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.7-6.1">Avoiding sending a TCP segment that would result in an IP datagram larger than the smallest MTU along an IP network path because this results in either packet loss or packet fragmentation. Making matters worse, some firewalls or middleboxes may drop fragmented packets or ICMP messages related to fragmentation.<a href="#section-3.7-6.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.7-6.2">Preventing delays to the application data stream, especially when TCP is waiting on the application to generate more data, or when the application is waiting on an event or input from its peer in order to generate more data.<a href="#section-3.7-6.2" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.7-6.3">Enabling "fate sharing" between TCP segments and lower-layer data units (e.g., below IP, for links with cell or frame sizes smaller than the IP MTU).<a href="#section-3.7-6.3" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.7-7">Towards meeting these competing sets of goals, TCP includes several mechanisms, including the Maximum Segment Size Option, Path MTU Discovery, the Nagle algorithm, and support for IPv6 Jumbograms, as discussed in the following subsections.<a href="#section-3.7-7" class="pilcrow"></a></p>
<div id="mss">
<section id="section-3.7.1">
<h4 id="name-maximum-segment-size-option">
<a href="#section-3.7.1" class="section-number selfRef">3.7.1. </a><a href="#name-maximum-segment-size-option" class="section-name selfRef">Maximum Segment Size Option</a>
</h4>
<p id="section-3.7.1-1">
TCP endpoints <span class="bcp14">MUST</span> implement both sending and receiving the MSS Option (MUST-14).<a href="#section-3.7.1-1" class="pilcrow"></a></p>
<p id="section-3.7.1-2">
TCP implementations <span class="bcp14">SHOULD</span> send an MSS Option in
every SYN segment when its receive MSS differs from the
default 536 for IPv4 or 1220 for IPv6 (SHLD-5), and <span class="bcp14">MAY</span> send it always (MAY-3).<a href="#section-3.7.1-2" class="pilcrow"></a></p>
<p id="section-3.7.1-3">
If an MSS Option is not received at connection setup, TCP implementations
<span class="bcp14">MUST</span> assume a default send MSS of 536 (576 - 40) for IPv4 or 1220 (1280 - 60) for IPv6 (MUST-15).<a href="#section-3.7.1-3" class="pilcrow"></a></p>
<p id="section-3.7.1-4">
The maximum size of a segment that a TCP endpoint really sends, the
"effective send MSS", <span class="bcp14">MUST</span> be the smaller (MUST-16) of the send MSS
(that reflects the available reassembly buffer size at the
remote host, the EMTU_R <span>[<a href="#RFC1122" class="xref">19</a>]</span>) and the largest transmission size permitted by the IP layer (EMTU_S <span>[<a href="#RFC1122" class="xref">19</a>]</span>):<a href="#section-3.7.1-4" class="pilcrow"></a></p>
<p id="section-3.7.1-5">
Eff.snd.MSS = min(SendMSS+20, MMS_S) - TCPhdrsize - IPoptionsize<a href="#section-3.7.1-5" class="pilcrow"></a></p>
<p id="section-3.7.1-6">
where:<a href="#section-3.7.1-6" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.7.1-7.1">
SendMSS is the MSS value received from the remote host,
or the default 536 for IPv4 or 1220 for IPv6, if no MSS Option is received.<a href="#section-3.7.1-7.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.7.1-7.2">
MMS_S is the maximum size for a transport-layer message
that TCP may send.<a href="#section-3.7.1-7.2" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.7.1-7.3">
TCPhdrsize is the size of the fixed TCP header and any options. This is 20 in the (rare) case that no options are present but may be larger if TCP Options are to be sent. Note that some options might not be included on all segments, but that for each segment sent, the sender should adjust the data length accordingly, within the Eff.snd.MSS.<a href="#section-3.7.1-7.3" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.7.1-7.4">
IPoptionsize is the size of any IPv4 options or IPv6 extension headers associated with a TCP connection. Note that some options or extension headers might not be included on all packets, but that for each segment sent, the sender should adjust the data length accordingly, within the Eff.snd.MSS.<a href="#section-3.7.1-7.4" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.7.1-8">
The MSS value to be sent in an MSS Option should be equal to the
effective MTU minus the fixed IP and TCP headers. By ignoring both
IP and TCP Options when calculating the value for the MSS Option, if
there are any IP or TCP Options to be sent in a packet, then the
sender must decrease the size of the TCP data accordingly. RFC 6691 <span>[<a href="#RFC6691" class="xref">43</a>]</span>
discusses this in greater detail.<a href="#section-3.7.1-8" class="pilcrow"></a></p>
<p id="section-3.7.1-9">
The MSS value to be sent in an MSS Option must be less than
or equal to:<a href="#section-3.7.1-9" class="pilcrow"></a></p>
<p style="margin-left: 1.5em" id="section-3.7.1-10">
MMS_R - 20<a href="#section-3.7.1-10" class="pilcrow"></a></p>
<p id="section-3.7.1-11">
where MMS_R is the maximum size for a transport-layer
message that can be received (and reassembled at the IP layer) (MUST-67). TCP obtains
MMS_R and MMS_S from the IP layer; see the generic call
GET_MAXSIZES in Section <a href="https://www.rfc-editor.org/rfc/rfc1122#section-3.4" class="relref">3.4</a> of RFC 1122. These are defined in terms of their IP MTU equivalents, EMTU_R and EMTU_S <span>[<a href="#RFC1122" class="xref">19</a>]</span>.<a href="#section-3.7.1-11" class="pilcrow"></a></p>
<p id="section-3.7.1-12">
When TCP is used in a situation where either the IP or TCP headers
are not fixed, the sender must reduce the amount of TCP data in
any given packet by the number of octets used by the IP and TCP
options. This has been a point of confusion historically, as explained in RFC 6691, Section <a href="https://www.rfc-editor.org/rfc/rfc6691#section-3.1" class="relref">3.1</a>.<a href="#section-3.7.1-12" class="pilcrow"></a></p>
</section>
</div>
<div id="pmtud">
<section id="section-3.7.2">
<h4 id="name-path-mtu-discovery">
<a href="#section-3.7.2" class="section-number selfRef">3.7.2. </a><a href="#name-path-mtu-discovery" class="section-name selfRef">Path MTU Discovery</a>
</h4>
<p id="section-3.7.2-1">A TCP implementation may be aware of the MTU on directly connected links, but will rarely have insight about MTUs across an entire network path. For IPv4, RFC 1122 recommends an IP-layer default effective MTU of less than or equal to 576 for destinations not directly connected, and for IPv6 this would be 1280. Using these fixed values limits TCP connection performance and efficiency. Instead, implementation of Path MTU Discovery (PMTUD) and Packetization Layer Path MTU Discovery (PLPMTUD) is strongly recommended in order for TCP to improve segmentation decisions. Both PMTUD and PLPMTUD help TCP choose segment sizes that avoid both on-path (for IPv4) and source fragmentation (IPv4 and IPv6).<a href="#section-3.7.2-1" class="pilcrow"></a></p>
<p id="section-3.7.2-2">PMTUD for IPv4 <span>[<a href="#RFC1191" class="xref">2</a>]</span> or IPv6 <span>[<a href="#RFC8201" class="xref">14</a>]</span> is implemented in conjunction between TCP, IP, and ICMP. It relies both on avoiding source fragmentation and setting the IPv4 DF (don't fragment) flag, the latter to inhibit on-path fragmentation. It relies on ICMP errors from routers along the path whenever a segment is too large to traverse a link. Several adjustments to a TCP implementation with PMTUD are described in RFC 2923 in order to deal with problems experienced in practice <span>[<a href="#RFC2923" class="xref">27</a>]</span>. PLPMTUD <span>[<a href="#RFC4821" class="xref">31</a>]</span> is a Standards Track improvement to PMTUD that relaxes the requirement for ICMP support across a path, and improves performance in cases where ICMP is not consistently conveyed, but still tries to avoid source fragmentation. The mechanisms in all four of these RFCs are recommended to be included in TCP implementations.<a href="#section-3.7.2-2" class="pilcrow"></a></p>
<p id="section-3.7.2-3">
The TCP MSS Option specifies an upper bound for the size of packets
that can be received (see <span>[<a href="#RFC6691" class="xref">43</a>]</span>). Hence, setting the value in the MSS Option too
small can impact the ability for PMTUD or PLPMTUD to find a larger
path MTU. RFC 1191 discusses this implication of many older TCP implementations setting the TCP MSS to 536 (corresponding to the IPv4 576 byte default MTU) for non-local destinations, rather than deriving it from the MTUs of connected interfaces as recommended.<a href="#section-3.7.2-3" class="pilcrow"></a></p>
</section>
</div>
<section id="section-3.7.3">
<h4 id="name-interfaces-with-variable-mt">
<a href="#section-3.7.3" class="section-number selfRef">3.7.3. </a><a href="#name-interfaces-with-variable-mt" class="section-name selfRef">Interfaces with Variable MTU Values</a>
</h4>
<p id="section-3.7.3-1">
The effective MTU can sometimes vary, as when used with variable
compression, e.g., RObust Header Compression (ROHC) <span>[<a href="#RFC5795" class="xref">37</a>]</span>. It is
tempting for a TCP implementation to advertise the largest possible MSS, to
support the most efficient use of compressed payloads.
Unfortunately, some compression schemes occasionally need to transmit
full headers (and thus smaller payloads) to resynchronize state at
their endpoint compressors/decompressors. If the largest MTU is used
to calculate the value to advertise in the MSS Option, TCP
retransmission may interfere with compressor resynchronization.<a href="#section-3.7.3-1" class="pilcrow"></a></p>
<p id="section-3.7.3-2">
As a result, when the effective MTU of an interface varies packet-to-packet, TCP implementations
<span class="bcp14">SHOULD</span> use the smallest effective MTU of the interface to calculate
the value to advertise in the MSS Option (SHLD-6).<a href="#section-3.7.3-2" class="pilcrow"></a></p>
</section>
<div id="nagle">
<section id="section-3.7.4">
<h4 id="name-nagle-algorithm">
<a href="#section-3.7.4" class="section-number selfRef">3.7.4. </a><a href="#name-nagle-algorithm" class="section-name selfRef">Nagle Algorithm</a>
</h4>
<p id="section-3.7.4-1">The "Nagle algorithm" was described in RFC 896 <span>[<a href="#RFC0896" class="xref">17</a>]</span> and was recommended in RFC 1122 <span>[<a href="#RFC1122" class="xref">19</a>]</span> for mitigation of an early problem of too many small packets being generated. It has been implemented in most current TCP code bases, sometimes with minor variations (see <a href="#minshall" class="xref">Appendix A.3</a>).<a href="#section-3.7.4-1" class="pilcrow"></a></p>
<p id="section-3.7.4-2">If there is unacknowledged data (i.e., SND.NXT &gt; SND.UNA), then the sending TCP endpoint buffers all user data (regardless of the PSH bit) until the outstanding data has been acknowledged or until the TCP endpoint can send a full-sized segment (Eff.snd.MSS bytes).<a href="#section-3.7.4-2" class="pilcrow"></a></p>
<p id="section-3.7.4-3">A TCP implementation <span class="bcp14">SHOULD</span> implement the Nagle algorithm to coalesce short segments (SHLD-7). However, there <span class="bcp14">MUST</span> be a way for an application to disable the Nagle algorithm on an individual connection (MUST-17). In all cases, sending data is also subject to the limitation imposed by the slow start algorithm <span>[<a href="#RFC5681" class="xref">8</a>]</span>.<a href="#section-3.7.4-3" class="pilcrow"></a></p>
<p id="section-3.7.4-4">
Since there can be problematic interactions between the Nagle algorithm and delayed acknowledgments, some implementations use minor variations of the Nagle algorithm, such as the one described in <a href="#minshall" class="xref">Appendix A.3</a>.<a href="#section-3.7.4-4" class="pilcrow"></a></p>
</section>
</div>
<section id="section-3.7.5">
<h4 id="name-ipv6-jumbograms">
<a href="#section-3.7.5" class="section-number selfRef">3.7.5. </a><a href="#name-ipv6-jumbograms" class="section-name selfRef">IPv6 Jumbograms</a>
</h4>
<p id="section-3.7.5-1">
In order to support TCP over IPv6 Jumbograms, implementations need to
be able to send TCP segments larger than the 64-KB limit that the MSS Option can convey. RFC 2675 <span>[<a href="#RFC2675" class="xref">24</a>]</span>
defines that an MSS value of 65,535 bytes is to be treated as infinity, and Path
MTU Discovery <span>[<a href="#RFC8201" class="xref">14</a>]</span> is used to determine the actual MSS.<a href="#section-3.7.5-1" class="pilcrow"></a></p>
<p id="section-3.7.5-2">
The Jumbo Payload Option need not be implemented or understood by IPv6 nodes that do not support attachment to links with an MTU greater than 65,575 <span>[<a href="#RFC2675" class="xref">24</a>]</span>, and the present IPv6 Node Requirements does not include support for Jumbograms <span>[<a href="#RFC8504" class="xref">55</a>]</span>.<a href="#section-3.7.5-2" class="pilcrow"></a></p>
</section>
</section>
<div id="datacomm">
<section id="section-3.8">
<h3 id="name-data-communication">
<a href="#section-3.8" class="section-number selfRef">3.8. </a><a href="#name-data-communication" class="section-name selfRef">Data Communication</a>
</h3>
<p id="section-3.8-1">
Once the connection is established, data is communicated by the
exchange of segments. Because segments may be lost due to errors
(checksum test failure) or network congestion, TCP uses
retransmission to ensure delivery of every segment.
Duplicate segments may arrive due to network or TCP retransmission.
As discussed in the section on sequence numbers (<a href="#sequence-numbers" class="xref">Section 3.4</a>), the TCP implementation performs
certain tests on the sequence and acknowledgment numbers in the
segments to verify their acceptability.<a href="#section-3.8-1" class="pilcrow"></a></p>
<p id="section-3.8-2">
The sender of data keeps track of the next sequence number to use in
the variable SND.NXT. The receiver of data keeps track of the next
sequence number to expect in the variable RCV.NXT. The sender of data
keeps track of the oldest unacknowledged sequence number in the
variable SND.UNA. If the data flow is momentarily idle and all data
sent has been acknowledged, then the three variables will be equal.<a href="#section-3.8-2" class="pilcrow"></a></p>
<p id="section-3.8-3">
When the sender creates a segment and transmits it, the sender advances
SND.NXT. When the receiver accepts a segment, it advances RCV.NXT and
sends an acknowledgment. When the data sender receives an
acknowledgment, it advances SND.UNA. The extent to which the values of
these variables differ is a measure of the delay in the communication.
The amount by which the variables are advanced is the length of the
data and SYN or FIN flags in the segment. Note that, once in the ESTABLISHED state, all
segments must carry current acknowledgment information.<a href="#section-3.8-3" class="pilcrow"></a></p>
<p id="section-3.8-4">
The CLOSE user call implies a push function (see <a href="#user-api" class="xref">Section 3.9.1</a>), as does the FIN control
flag in an incoming segment.<a href="#section-3.8-4" class="pilcrow"></a></p>
<div id="RTO">
<section id="section-3.8.1">
<h4 id="name-retransmission-timeout">
<a href="#section-3.8.1" class="section-number selfRef">3.8.1. </a><a href="#name-retransmission-timeout" class="section-name selfRef">Retransmission Timeout</a>
</h4>
<p id="section-3.8.1-1">
Because of the variability of the networks that compose an
internetwork system and the wide range of uses of TCP connections, the
retransmission timeout (RTO) must be dynamically determined.<a href="#section-3.8.1-1" class="pilcrow"></a></p>
<p id="section-3.8.1-2">
The RTO <span class="bcp14">MUST</span> be computed according to the
algorithm in <span>[<a href="#RFC6298" class="xref">10</a>]</span>, including Karn's algorithm for taking RTT samples (MUST-18).<a href="#section-3.8.1-2" class="pilcrow"></a></p>
<p id="section-3.8.1-3">
RFC 793 contains an early example procedure for computing the RTO, based on work mentioned in IEN 177 <span>[<a href="#IEN177" class="xref">71</a>]</span>. This was then replaced by the algorithm described in RFC 1122, which was subsequently updated in RFC 2988 and then again in RFC 6298.<a href="#section-3.8.1-3" class="pilcrow"></a></p>
<p id="section-3.8.1-4">
RFC 1122 allows that if a retransmitted packet is identical to the original
packet (which implies not only that the data boundaries have not changed, but
also that none of the headers have changed), then the same IPv4 Identification
field <span class="bcp14">MAY</span> be used (see Section <a href="https://www.rfc-editor.org/rfc/rfc1122#section-3.2.1.5" class="relref">3.2.1.5</a> of RFC 1122) (MAY-4). The same IP
Identification field may be reused anyways since it is only meaningful when a
datagram is fragmented <span>[<a href="#RFC6864" class="xref">44</a>]</span>. TCP implementations should not rely on or typically
interact with this IPv4 header field in any way. It is not a reasonable way to
indicate duplicate sent segments nor to identify duplicate received
segments.<a href="#section-3.8.1-4" class="pilcrow"></a></p>
</section>
</div>
<section id="section-3.8.2">
<h4 id="name-tcp-congestion-control">
<a href="#section-3.8.2" class="section-number selfRef">3.8.2. </a><a href="#name-tcp-congestion-control" class="section-name selfRef">TCP Congestion Control</a>
</h4>
<p id="section-3.8.2-1">RFC 2914 <span>[<a href="#RFC2914" class="xref">5</a>]</span> explains the importance of congestion control for the Internet.<a href="#section-3.8.2-1" class="pilcrow"></a></p>
<p id="section-3.8.2-2">RFC 1122 required implementation of Van Jacobson's congestion control algorithms slow start and congestion avoidance together with exponential backoff for successive RTO values for the same segment. RFC 2581 provided IETF Standards Track description of slow start and congestion avoidance, along with fast retransmit and fast recovery. RFC 5681 is the current description of these algorithms and is the current Standards Track specification providing guidelines for TCP congestion control. RFC 6298 describes exponential backoff of RTO values, including keeping the backed-off value until a subsequent segment with new data has been sent and acknowledged without retransmission.<a href="#section-3.8.2-2" class="pilcrow"></a></p>
<p id="section-3.8.2-3">A TCP endpoint <span class="bcp14">MUST</span> implement the basic congestion control algorithms slow start, congestion avoidance, and exponential backoff of RTO to avoid creating congestion collapse conditions (MUST-19). RFC 5681 and RFC 6298 describe the basic algorithms on the IETF Standards Track that are broadly applicable. Multiple other suitable algorithms exist and have been widely used. Many TCP implementations support a set of alternative algorithms that can be configured for use on the endpoint. An endpoint <span class="bcp14">MAY</span> implement such alternative algorithms provided that the algorithms are conformant with the TCP specifications from the IETF Standards Track as described in RFC 2914, RFC 5033 <span>[<a href="#RFC5033" class="xref">7</a>]</span>, and RFC 8961 <span>[<a href="#RFC8961" class="xref">15</a>]</span> (MAY-18).<a href="#section-3.8.2-3" class="pilcrow"></a></p>
<p id="section-3.8.2-4">Explicit Congestion Notification (ECN) was defined in RFC 3168 and is an IETF Standards Track enhancement that has many benefits <span>[<a href="#RFC8087" class="xref">51</a>]</span>.<a href="#section-3.8.2-4" class="pilcrow"></a></p>
<p id="section-3.8.2-5">A TCP endpoint <span class="bcp14">SHOULD</span> implement ECN as described in RFC 3168 (SHLD-8).<a href="#section-3.8.2-5" class="pilcrow"></a></p>
</section>
<div id="connfail">
<section id="section-3.8.3">
<h4 id="name-tcp-connection-failures">
<a href="#section-3.8.3" class="section-number selfRef">3.8.3. </a><a href="#name-tcp-connection-failures" class="section-name selfRef">TCP Connection Failures</a>
</h4>
<p id="section-3.8.3-1">
Excessive retransmission of the same segment by a TCP endpoint
indicates some failure of the remote host or the internetwork
path. This failure may be of short or long duration. The
following procedure <span class="bcp14">MUST</span> be used to handle excessive
retransmissions of data segments (MUST-20):<a href="#section-3.8.3-1" class="pilcrow"></a></p>
<span class="break"></span><dl class="olPercent" id="section-3.8.3-2">
<dt>(a)</dt>
<dd id="section-3.8.3-2.1">
There are two thresholds R1 and R2 measuring the amount
of retransmission that has occurred for the same
segment. R1 and R2 might be measured in time units or
as a count of retransmissions (with the current RTO and
corresponding backoffs as a conversion factor, if needed).<a href="#section-3.8.3-2.1" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt>(b)</dt>
<dd id="section-3.8.3-2.2">
When the number of transmissions of the same segment
reaches or exceeds threshold R1, pass negative advice
(see <span><a href="https://www.rfc-editor.org/rfc/rfc1122#section-3.3.1.4" class="relref">Section 3.3.1.4</a> of [<a href="#RFC1122" class="xref">19</a>]</span>) to the IP layer, to trigger
dead-gateway diagnosis.<a href="#section-3.8.3-2.2" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt>(c)</dt>
<dd id="section-3.8.3-2.3">
When the number of transmissions of the same segment
reaches a threshold R2 greater than R1, close the
connection.<a href="#section-3.8.3-2.3" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt>(d)</dt>
<dd id="section-3.8.3-2.4">
An application <span class="bcp14">MUST</span> (MUST-21) be able to set the value for R2 for
a particular connection. For example, an interactive
application might set R2 to "infinity", giving the user
control over when to disconnect.<a href="#section-3.8.3-2.4" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt>(e)</dt>
<dd id="section-3.8.3-2.5">
TCP implementations <span class="bcp14">SHOULD</span> inform the application of the delivery
problem (unless such information has been disabled by
the application; see the "Asynchronous Reports" section (<a href="#asynchronous-reports" class="xref">Section 3.9.1.8</a>)), when R1 is
reached and before R2 (SHLD-9). This will allow a remote login
application program to inform the user,
for example.<a href="#section-3.8.3-2.5" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-3.8.3-3">
The value of R1 <span class="bcp14">SHOULD</span> correspond to at least 3
retransmissions, at the current RTO (SHLD-10). The value of R2 <span class="bcp14">SHOULD</span>
correspond to at least 100 seconds (SHLD-11).<a href="#section-3.8.3-3" class="pilcrow"></a></p>
<p id="section-3.8.3-4">
An attempt to open a TCP connection could fail with
excessive retransmissions of the SYN segment or by receipt
of a RST segment or an ICMP Port Unreachable. SYN
retransmissions <span class="bcp14">MUST</span> be handled in the general way just
described for data retransmissions, including notification
of the application layer.<a href="#section-3.8.3-4" class="pilcrow"></a></p>
<p id="section-3.8.3-5">
However, the values of R1 and R2 may be different for SYN
and data segments. In particular, R2 for a SYN segment <span class="bcp14">MUST</span>
be set large enough to provide retransmission of the segment
for at least 3 minutes (MUST-23). The application can close the
connection (i.e., give up on the open attempt) sooner, of
course.<a href="#section-3.8.3-5" class="pilcrow"></a></p>
</section>
</div>
<section id="section-3.8.4">
<h4 id="name-tcp-keep-alives">
<a href="#section-3.8.4" class="section-number selfRef">3.8.4. </a><a href="#name-tcp-keep-alives" class="section-name selfRef">TCP Keep-Alives</a>
</h4>
<p id="section-3.8.4-1">
A TCP connection is said to be "idle" if for some long
amount of time there have been no incoming segments received and
there is no new or unacknowledged data to be sent.<a href="#section-3.8.4-1" class="pilcrow"></a></p>
<p id="section-3.8.4-2">
Implementers <span class="bcp14">MAY</span> include "keep-alives" in their TCP implementations
(MAY-5), although this practice is not universally accepted. Some
TCP implementations, however, have included a keep-alive mechanism.
To confirm that an idle connection is still active, these
implementations send a probe segment designed to elicit a response
from the TCP peer. Such a segment generally contains SEG.SEQ =
SND.NXT-1 and may or may not contain one garbage octet of data.
If keep-alives are included, the application <span class="bcp14">MUST</span> be able to turn
them on or off for each TCP connection (MUST-24), and they <span class="bcp14">MUST</span>
default to off (MUST-25).<a href="#section-3.8.4-2" class="pilcrow"></a></p>
<p id="section-3.8.4-3">
Keep-alive packets <span class="bcp14">MUST</span> only be sent when no sent data is outstanding,
and no data or
acknowledgment packets have been received for the
connection within an interval (MUST-26). This interval <span class="bcp14">MUST</span> be
configurable (MUST-27) and <span class="bcp14">MUST</span> default to no less than two hours (MUST-28).<a href="#section-3.8.4-3" class="pilcrow"></a></p>
<p id="section-3.8.4-4">
It is extremely important to remember that ACK segments that
contain no data are not reliably transmitted by TCP.
Consequently, if a keep-alive mechanism is implemented it
<span class="bcp14">MUST NOT</span> interpret failure to respond to any specific probe
as a dead connection (MUST-29).<a href="#section-3.8.4-4" class="pilcrow"></a></p>
<p id="section-3.8.4-5">
An implementation <span class="bcp14">SHOULD</span> send a keep-alive segment with no
data (SHLD-12); however, it <span class="bcp14">MAY</span> be configurable to send a keep-alive
segment containing one garbage octet (MAY-6), for compatibility with
erroneous TCP implementations.<a href="#section-3.8.4-5" class="pilcrow"></a></p>
</section>
<div id="urgent">
<section id="section-3.8.5">
<h4 id="name-the-communication-of-urgent">
<a href="#section-3.8.5" class="section-number selfRef">3.8.5. </a><a href="#name-the-communication-of-urgent" class="section-name selfRef">The Communication of Urgent Information</a>
</h4>
<p id="section-3.8.5-1">
As a result of implementation differences and middlebox interactions, new applications <span class="bcp14">SHOULD NOT</span> employ the TCP urgent mechanism (SHLD-13). However, TCP implementations <span class="bcp14">MUST</span> still include support for the urgent mechanism (MUST-30). Information on how some TCP implementations interpret the urgent pointer can be found in RFC 6093 <span>[<a href="#RFC6093" class="xref">39</a>]</span>.<a href="#section-3.8.5-1" class="pilcrow"></a></p>
<p id="section-3.8.5-2">
The objective of the TCP urgent mechanism is to allow the sending user
to stimulate the receiving user to accept some urgent data and to
permit the receiving TCP endpoint to indicate to the receiving user when all
the currently known urgent data has been received by the user.<a href="#section-3.8.5-2" class="pilcrow"></a></p>
<p id="section-3.8.5-3">
This mechanism permits a point in the data stream to be designated as
the end of urgent information. Whenever this point is in advance of
the receive sequence number (RCV.NXT) at the receiving TCP endpoint, then the TCP implementation
must tell the user to go into "urgent mode"; when the receive sequence
number catches up to the urgent pointer, the TCP implementation must tell user to go
into "normal mode". If the urgent pointer is updated while the user
is in "urgent mode", the update will be invisible to the user.<a href="#section-3.8.5-3" class="pilcrow"></a></p>
<p id="section-3.8.5-4">
The method employs an urgent field that is carried in all segments
transmitted. The URG control flag indicates that the urgent field is
meaningful and must be added to the segment sequence number to yield
the urgent pointer. The absence of this flag indicates that there is
no urgent data outstanding.<a href="#section-3.8.5-4" class="pilcrow"></a></p>
<p id="section-3.8.5-5">
To send an urgent indication, the user must also send at least one data
octet. If the sending user also indicates a push, timely delivery of
the urgent information to the destination process is enhanced. Note that because changes in the urgent pointer correspond to data being written by a sending application, the urgent pointer cannot "recede" in the sequence space, but a TCP receiver should be robust to invalid urgent pointer values.<a href="#section-3.8.5-5" class="pilcrow"></a></p>
<p id="section-3.8.5-6">
A TCP implementation <span class="bcp14">MUST</span> support a sequence of urgent data of any length (MUST-31) <span>[<a href="#RFC1122" class="xref">19</a>]</span>.<a href="#section-3.8.5-6" class="pilcrow"></a></p>
<p id="section-3.8.5-7">
The urgent pointer <span class="bcp14">MUST</span> point to the sequence number of the octet following the urgent data (MUST-62).<a href="#section-3.8.5-7" class="pilcrow"></a></p>
<p id="section-3.8.5-8">
A TCP implementation <span class="bcp14">MUST</span> (MUST-32) inform the application layer asynchronously whenever it receives an urgent pointer and there was previously no pending urgent data, or whenever the urgent pointer advances in the data stream. The TCP implementation <span class="bcp14">MUST</span> (MUST-33) provide a way for the application to learn how much urgent data remains to be read from the connection, or at least to determine whether more urgent data remains to be read <span>[<a href="#RFC1122" class="xref">19</a>]</span>.<a href="#section-3.8.5-8" class="pilcrow"></a></p>
</section>
</div>
<section id="section-3.8.6">
<h4 id="name-managing-the-window">
<a href="#section-3.8.6" class="section-number selfRef">3.8.6. </a><a href="#name-managing-the-window" class="section-name selfRef">Managing the Window</a>
</h4>
<p id="section-3.8.6-1">
The window sent in each segment indicates the range of sequence
numbers the sender of the window (the data receiver) is currently
prepared to accept. There is an assumption that this is related to
the data buffer space currently available for this
connection.<a href="#section-3.8.6-1" class="pilcrow"></a></p>
<p id="section-3.8.6-2">
The sending TCP endpoint packages the data to be transmitted into segments
that fit the current window, and may repackage segments on the
retransmission queue. Such repackaging is not required but may be
helpful.<a href="#section-3.8.6-2" class="pilcrow"></a></p>
<p id="section-3.8.6-3">
In a connection with a one-way data flow, the window information will
be carried in acknowledgment segments that all have the same sequence
number, so there will be no way to reorder them if they arrive out of
order. This is not a serious problem, but it will allow the window
information to be on occasion temporarily based on old reports from
the data receiver. A refinement to avoid this problem is to act on
the window information from segments that carry the highest
acknowledgment number (that is, segments with an acknowledgment number
equal to or greater than the highest previously received).<a href="#section-3.8.6-3" class="pilcrow"></a></p>
<p id="section-3.8.6-4">
Indicating a large window encourages transmissions. If more data
arrives than can be accepted, it will be discarded. This will result
in excessive retransmissions, adding unnecessarily to the load on the
network and the TCP endpoints. Indicating a small window may restrict the
transmission of data to the point of introducing a round-trip delay
between each new segment transmitted.<a href="#section-3.8.6-4" class="pilcrow"></a></p>
<p id="section-3.8.6-5">
The mechanisms provided allow a TCP endpoint to advertise a large window and to
subsequently advertise a much smaller window without having accepted
that much data. This so-called "shrinking the window" is strongly
discouraged. The robustness principle <span>[<a href="#RFC1122" class="xref">19</a>]</span> dictates that TCP peers will not
shrink the window themselves, but will be prepared for such behavior
on the part of other TCP peers.<a href="#section-3.8.6-5" class="pilcrow"></a></p>
<p id="section-3.8.6-6">
A TCP receiver <span class="bcp14">SHOULD NOT</span> shrink the window, i.e., move the
right window edge to the left (SHLD-14). However, a sending TCP peer <span class="bcp14">MUST</span>
be robust against window shrinking, which may cause the
"usable window" (see <a href="#SWSsender" class="xref">Section 3.8.6.2.1</a>) to become negative (MUST-34).<a href="#section-3.8.6-6" class="pilcrow"></a></p>
<p id="section-3.8.6-7">
If this happens, the sender <span class="bcp14">SHOULD NOT</span> send new data (SHLD-15), but
<span class="bcp14">SHOULD</span> retransmit normally the old unacknowledged data
between SND.UNA and SND.UNA+SND.WND (SHLD-16). The sender <span class="bcp14">MAY</span> also
retransmit old data beyond SND.UNA+SND.WND (MAY-7), but <span class="bcp14">SHOULD NOT</span>
time out the connection if data beyond the right window edge
is not acknowledged (SHLD-17). If the window shrinks to zero, the TCP implementation
<span class="bcp14">MUST</span> probe it in the standard way (described below) (MUST-35).<a href="#section-3.8.6-7" class="pilcrow"></a></p>
<div id="zwp">
<section id="section-3.8.6.1">
<h5 id="name-zero-window-probing">
<a href="#section-3.8.6.1" class="section-number selfRef">3.8.6.1. </a><a href="#name-zero-window-probing" class="section-name selfRef">Zero-Window Probing</a>
</h5>
<p id="section-3.8.6.1-1">
The sending TCP peer must regularly transmit at least one octet of new data
(if available), or retransmit to the receiving TCP peer even if the send
window is zero, in order to "probe" the window. This
retransmission is essential to guarantee that when either TCP peer has a zero
window the reopening of the window will be reliably reported to the other.
This is referred to as Zero-Window Probing (ZWP) in other documents.<a href="#section-3.8.6.1-1" class="pilcrow"></a></p>
<p id="section-3.8.6.1-2">
Probing of zero (offered) windows <span class="bcp14">MUST</span> be supported (MUST-36).<a href="#section-3.8.6.1-2" class="pilcrow"></a></p>
<p id="section-3.8.6.1-3">
A TCP implementation <span class="bcp14">MAY</span> keep its offered receive window closed
indefinitely (MAY-8). As long as the receiving TCP peer continues to
send acknowledgments in response to the probe segments, the
sending TCP peer <span class="bcp14">MUST</span> allow the connection to stay open (MUST-37). This
enables TCP to function in scenarios such as the "printer
ran out of paper" situation described in
<span><a href="https://www.rfc-editor.org/rfc/rfc1122#section-4.2.2.17" class="relref">Section 4.2.2.17</a> of [<a href="#RFC1122" class="xref">19</a>]</span>. The behavior is subject to the implementation's resource
management concerns, as noted in <span>[<a href="#RFC6429" class="xref">41</a>]</span>.<a href="#section-3.8.6.1-3" class="pilcrow"></a></p>
<p id="section-3.8.6.1-4">
When the receiving TCP peer has a zero window and a segment arrives, it must
still send an acknowledgment showing its next expected sequence number
and current window (zero).<a href="#section-3.8.6.1-4" class="pilcrow"></a></p>
<p id="section-3.8.6.1-5">
The transmitting host <span class="bcp14">SHOULD</span> send the first zero-window probe when a zero
window has existed for the retransmission timeout period (SHLD-29) (<a href="#RTO" class="xref">Section 3.8.1</a>), and <span class="bcp14">SHOULD</span> increase exponentially the interval between
successive probes (SHLD-30).<a href="#section-3.8.6.1-5" class="pilcrow"></a></p>
</section>
</div>
<section id="section-3.8.6.2">
<h5 id="name-silly-window-syndrome-avoid">
<a href="#section-3.8.6.2" class="section-number selfRef">3.8.6.2. </a><a href="#name-silly-window-syndrome-avoid" class="section-name selfRef">Silly Window Syndrome Avoidance</a>
</h5>
<p id="section-3.8.6.2-1">The "Silly Window Syndrome" (SWS) is a stable pattern of small incremental window movements resulting in extremely poor TCP performance. Algorithms to avoid SWS are described below for both the sending side and the receiving side. RFC 1122 contains more detailed discussion of the SWS problem. Note that the Nagle algorithm and the sender SWS avoidance algorithm play complementary roles in improving performance. The Nagle algorithm discourages sending tiny segments when the data to be sent increases in small increments, while the SWS avoidance algorithm discourages small segments resulting from the right window edge advancing in small increments.<a href="#section-3.8.6.2-1" class="pilcrow"></a></p>
<div id="SWSsender">
<section id="section-3.8.6.2.1">
<h6 id="name-senders-algorithm-when-to-s">
<a href="#section-3.8.6.2.1" class="section-number selfRef">3.8.6.2.1. </a><a href="#name-senders-algorithm-when-to-s" class="section-name selfRef">Sender's Algorithm -- When to Send Data</a>
</h6>
<p id="section-3.8.6.2.1-1">
A TCP implementation <span class="bcp14">MUST</span> include a SWS avoidance algorithm in the sender (MUST-38).<a href="#section-3.8.6.2.1-1" class="pilcrow"></a></p>
<p id="section-3.8.6.2.1-2">
The Nagle algorithm from <a href="#nagle" class="xref">Section 3.7.4</a> additionally describes how to coalesce short segments.<a href="#section-3.8.6.2.1-2" class="pilcrow"></a></p>
<p id="section-3.8.6.2.1-3">
The sender's SWS avoidance algorithm is more difficult
than the receiver's because the sender does not know
(directly) the receiver's total buffer space (RCV.BUFF).
An approach that has been found to work well is for
the sender to calculate Max(SND.WND), which is the maximum send
window it has seen so far on the connection, and to use
this value as an estimate of RCV.BUFF. Unfortunately,
this can only be an estimate; the receiver may at any
time reduce the size of RCV.BUFF. To avoid a resulting
deadlock, it is necessary to have a timeout to force
transmission of data, overriding the SWS avoidance
algorithm. In practice, this timeout should seldom
occur.<a href="#section-3.8.6.2.1-3" class="pilcrow"></a></p>
<p id="section-3.8.6.2.1-4">
The "usable window" is:<a href="#section-3.8.6.2.1-4" class="pilcrow"></a></p>
<p style="margin-left: 1.5em" id="section-3.8.6.2.1-5">U = SND.UNA + SND.WND - SND.NXT<a href="#section-3.8.6.2.1-5" class="pilcrow"></a></p>
<p id="section-3.8.6.2.1-6">
i.e., the offered window less the amount of data sent
but not acknowledged. If D is the amount of data
queued in the sending TCP endpoint but not yet sent, then the
following set of rules is recommended.<a href="#section-3.8.6.2.1-6" class="pilcrow"></a></p>
<p id="section-3.8.6.2.1-7">
Send data:<a href="#section-3.8.6.2.1-7" class="pilcrow"></a></p>
<span class="break"></span><dl class="olPercent" id="section-3.8.6.2.1-8">
<dt>(1)</dt>
<dd id="section-3.8.6.2.1-8.1">
<p id="section-3.8.6.2.1-8.1.1">
if a maximum-sized segment can be sent, i.e., if:<a href="#section-3.8.6.2.1-8.1.1" class="pilcrow"></a></p>
<p style="margin-left: 1.5em" id="section-3.8.6.2.1-8.1.2">
min(D,U) &gt;= Eff.snd.MSS;<a href="#section-3.8.6.2.1-8.1.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt>(2)</dt>
<dd id="section-3.8.6.2.1-8.2">
<p id="section-3.8.6.2.1-8.2.1">
or if the data is pushed and all queued data can
be sent now, i.e., if:<a href="#section-3.8.6.2.1-8.2.1" class="pilcrow"></a></p>
<p style="margin-left: 1.5em" id="section-3.8.6.2.1-8.2.2">
[SND.NXT = SND.UNA and] PUSHed and D &lt;= U<a href="#section-3.8.6.2.1-8.2.2" class="pilcrow"></a></p>
<p id="section-3.8.6.2.1-8.2.3">
(the bracketed condition is imposed by the Nagle
algorithm);<a href="#section-3.8.6.2.1-8.2.3" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt>(3)</dt>
<dd id="section-3.8.6.2.1-8.3">
<p id="section-3.8.6.2.1-8.3.1">
or if at least a fraction Fs of the maximum window
can be sent, i.e., if:<a href="#section-3.8.6.2.1-8.3.1" class="pilcrow"></a></p>
<p style="margin-left: 1.5em" id="section-3.8.6.2.1-8.3.2">
[SND.NXT = SND.UNA and]<a href="#section-3.8.6.2.1-8.3.2" class="pilcrow"></a></p>
<p style="margin-left: 3.0em" id="section-3.8.6.2.1-8.3.3">
min(D,U) &gt;= Fs * Max(SND.WND);<a href="#section-3.8.6.2.1-8.3.3" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt>(4)</dt>
<dd id="section-3.8.6.2.1-8.4">
or if the override timeout
occurs.<a href="#section-3.8.6.2.1-8.4" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-3.8.6.2.1-9">
Here Fs is a fraction whose recommended value is 1/2.
The override timeout should be in the range 0.1 - 1.0
seconds. It may be convenient to combine this timer
with the timer used to probe zero windows
(<a href="#zwp" class="xref">Section 3.8.6.1</a>).<a href="#section-3.8.6.2.1-9" class="pilcrow"></a></p>
</section>
</div>
<section id="section-3.8.6.2.2">
<h6 id="name-receivers-algorithm-when-to">
<a href="#section-3.8.6.2.2" class="section-number selfRef">3.8.6.2.2. </a><a href="#name-receivers-algorithm-when-to" class="section-name selfRef">Receiver's Algorithm -- When to Send a Window Update</a>
</h6>
<p id="section-3.8.6.2.2-1">
A TCP implementation <span class="bcp14">MUST</span> include a SWS avoidance algorithm in the receiver (MUST-39).<a href="#section-3.8.6.2.2-1" class="pilcrow"></a></p>
<p id="section-3.8.6.2.2-2">
The receiver's SWS avoidance algorithm determines when
the right window edge may be advanced; this is
customarily known as "updating the window". This
algorithm combines with the delayed ACK algorithm
(<a href="#delACK" class="xref">Section 3.8.6.3</a>) to determine when an ACK segment
containing the current window will really be sent to
the receiver.<a href="#section-3.8.6.2.2-2" class="pilcrow"></a></p>
<p id="section-3.8.6.2.2-3">
The solution to receiver SWS is to avoid advancing the
right window edge RCV.NXT+RCV.WND in small increments,
even if data is received from the network in small
segments.<a href="#section-3.8.6.2.2-3" class="pilcrow"></a></p>
<p id="section-3.8.6.2.2-4">
Suppose the total receive buffer space is RCV.BUFF. At
any given moment, RCV.USER octets of this total may be
tied up with data that has been received and
acknowledged but that the user process has not yet
consumed. When the connection is quiescent, RCV.WND =
RCV.BUFF and RCV.USER = 0.<a href="#section-3.8.6.2.2-4" class="pilcrow"></a></p>
<p id="section-3.8.6.2.2-5">
Keeping the right window edge fixed as data arrives and
is acknowledged requires that the receiver offer less
than its full buffer space, i.e., the receiver must
specify a RCV.WND that keeps RCV.NXT+RCV.WND constant
as RCV.NXT increases. Thus, the total buffer space
RCV.BUFF is generally divided into three parts:<a href="#section-3.8.6.2.2-5" class="pilcrow"></a></p>
<div class="alignLeft art-text artwork" id="section-3.8.6.2.2-6">
<pre>
|&lt;------- RCV.BUFF ----------------&gt;|
1 2 3
----|---------|------------------|------|----
RCV.NXT ^
(Fixed)
1 - RCV.USER = data received but not yet consumed;
2 - RCV.WND = space advertised to sender;
3 - Reduction = space available but not yet
advertised.
</pre><a href="#section-3.8.6.2.2-6" class="pilcrow"></a>
</div>
<p id="section-3.8.6.2.2-7">
The suggested SWS avoidance algorithm for the receiver
is to keep RCV.NXT+RCV.WND fixed until the reduction
satisfies:<a href="#section-3.8.6.2.2-7" class="pilcrow"></a></p>
<div class="alignLeft art-text artwork" id="section-3.8.6.2.2-8">
<pre>
RCV.BUFF - RCV.USER - RCV.WND &gt;=
min( Fr * RCV.BUFF, Eff.snd.MSS )
</pre><a href="#section-3.8.6.2.2-8" class="pilcrow"></a>
</div>
<p id="section-3.8.6.2.2-9">
where Fr is a fraction whose recommended value is 1/2,
and Eff.snd.MSS is the effective send MSS for the
connection (see <a href="#mss" class="xref">Section 3.7.1</a>). When the inequality
is satisfied, RCV.WND is set to RCV.BUFF-RCV.USER.<a href="#section-3.8.6.2.2-9" class="pilcrow"></a></p>
<p id="section-3.8.6.2.2-10">
Note that the general effect of this algorithm is to
advance RCV.WND in increments of Eff.snd.MSS (for
realistic receive buffers: Eff.snd.MSS &lt; RCV.BUFF/2).
Note also that the receiver must use its own
Eff.snd.MSS, making the assumption that it is the same as the sender's.<a href="#section-3.8.6.2.2-10" class="pilcrow"></a></p>
</section>
</section>
<div id="delACK">
<section id="section-3.8.6.3">
<h5 id="name-delayed-acknowledgments-whe">
<a href="#section-3.8.6.3" class="section-number selfRef">3.8.6.3. </a><a href="#name-delayed-acknowledgments-whe" class="section-name selfRef">Delayed Acknowledgments -- When to Send an ACK Segment</a>
</h5>
<p id="section-3.8.6.3-1">
A host that is receiving a stream of TCP data segments can
increase efficiency in both the network and the hosts by
sending fewer than one ACK (acknowledgment) segment per data
segment received; this is known as a "delayed ACK".<a href="#section-3.8.6.3-1" class="pilcrow"></a></p>
<p id="section-3.8.6.3-2">
A TCP endpoint <span class="bcp14">SHOULD</span> implement a delayed ACK (SHLD-18), but an ACK
should not be excessively delayed; in particular, the delay <span class="bcp14">MUST</span> be
less than 0.5 seconds (MUST-40). An ACK <span class="bcp14">SHOULD</span> be generated for at
least every second full-sized segment or 2*RMSS bytes of new data
(where RMSS is the MSS specified by the TCP endpoint receiving the
segments to be acknowledged, or the default value if not specified)
(SHLD-19). Excessive delays on ACKs can disturb the round-trip
timing and packet "clocking" algorithms. More complete
discussion of delayed ACK behavior is in Section <a href="https://www.rfc-editor.org/rfc/rfc5681#section-4.2" class="relref">4.2</a> of RFC 5681
<span>[<a href="#RFC5681" class="xref">8</a>]</span>, including recommendations to immediately
acknowledge out-of-order segments, segments above a gap in sequence
space, or segments that fill all or part of a gap, in order to
accelerate loss recovery.<a href="#section-3.8.6.3-2" class="pilcrow"></a></p>
<p id="section-3.8.6.3-3">
Note that there are several current
practices that further lead to a reduced number of ACKs, including
generic receive offload (GRO) <span>[<a href="#offload" class="xref">72</a>]</span>, ACK compression, and ACK decimation
<span>[<a href="#RFC3449" class="xref">28</a>]</span>.<a href="#section-3.8.6.3-3" class="pilcrow"></a></p>
</section>
</div>
</section>
</section>
</div>
<section id="section-3.9">
<h3 id="name-interfaces">
<a href="#section-3.9" class="section-number selfRef">3.9. </a><a href="#name-interfaces" class="section-name selfRef">Interfaces</a>
</h3>
<p id="section-3.9-1">
There are of course two interfaces of concern: the user/TCP interface
and the TCP/lower-level interface. We have a fairly elaborate model
of the user/TCP interface, but the interface to the lower-level
protocol module is left unspecified here since it will be specified
in detail by the specification of the lower-level protocol. For the
case that the lower level is IP, we note some of the parameter values
that TCP implementations might use.<a href="#section-3.9-1" class="pilcrow"></a></p>
<div id="user-api">
<section id="section-3.9.1">
<h4 id="name-user-tcp-interface">
<a href="#section-3.9.1" class="section-number selfRef">3.9.1. </a><a href="#name-user-tcp-interface" class="section-name selfRef">User/TCP Interface</a>
</h4>
<p id="section-3.9.1-1">
The following functional description of user commands to the TCP implementation is,
at best, fictional, since every operating system will have different
facilities. Consequently, we must warn readers that different TCP
implementations may have different user interfaces. However, all
TCP implementations must provide a certain minimum set of services to guarantee
that all TCP implementations can support the same protocol
hierarchy. This section specifies the functional interfaces
required of all TCP implementations.<a href="#section-3.9.1-1" class="pilcrow"></a></p>
<p id="section-3.9.1-2">
<span><a href="https://www.rfc-editor.org/rfc/rfc8303#section-3.1" class="relref">Section 3.1</a> of [<a href="#RFC8303" class="xref">53</a>]</span> also identifies primitives provided by TCP and could be used as an additional reference for implementers.<a href="#section-3.9.1-2" class="pilcrow"></a></p>
<p id="section-3.9.1-3">
The following sections functionally characterize a user/TCP
interface. The notation used is similar to most procedure or
function calls in high-level languages, but this usage is not
meant to rule out trap-type service calls.<a href="#section-3.9.1-3" class="pilcrow"></a></p>
<p id="section-3.9.1-4">
The user commands described below specify the basic functions the
TCP implementation must perform to support interprocess communication.
Individual implementations must define their own exact format and
may provide combinations or subsets of the basic functions in
single calls. In particular, some implementations may wish to
automatically OPEN a connection on the first SEND or RECEIVE
issued by the user for a given connection.<a href="#section-3.9.1-4" class="pilcrow"></a></p>
<p id="section-3.9.1-5">
In providing interprocess communication facilities, the TCP implementation must
not only accept commands, but must also return information to the
processes it serves. The latter consists of:<a href="#section-3.9.1-5" class="pilcrow"></a></p>
<span class="break"></span><dl class="olPercent" id="section-3.9.1-6">
<dt>(a)</dt>
<dd id="section-3.9.1-6.1">
general information about a connection (e.g., interrupts,
remote close, binding of unspecified remote socket).<a href="#section-3.9.1-6.1" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt>(b)</dt>
<dd id="section-3.9.1-6.2">
replies to specific user commands indicating success or
various types of failure.<a href="#section-3.9.1-6.2" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
</dl>
<section id="section-3.9.1.1">
<h5 id="name-open">
<a href="#section-3.9.1.1" class="section-number selfRef">3.9.1.1. </a><a href="#name-open" class="section-name selfRef">Open</a>
</h5>
<p id="section-3.9.1.1-1">
Format: OPEN (local port, remote socket, active/passive
[, timeout] [, Diffserv field] [, security/compartment]
[, local IP address] [, options])
-&gt; local connection name<a href="#section-3.9.1.1-1" class="pilcrow"></a></p>
<p id="section-3.9.1.1-2">
If the active/passive flag is set to passive, then this is a
call to LISTEN for an incoming connection. A passive OPEN may
have either a fully specified remote socket to wait for a
particular connection or an unspecified remote socket to wait
for any call. A fully specified passive call can be made active
by the subsequent execution of a SEND.<a href="#section-3.9.1.1-2" class="pilcrow"></a></p>
<p id="section-3.9.1.1-3">
A transmission control block (TCB) is created and partially
filled in with data from the OPEN command parameters.<a href="#section-3.9.1.1-3" class="pilcrow"></a></p>
<p id="section-3.9.1.1-4">
Every passive OPEN call either creates a new connection
record in LISTEN state, or it returns an error; it <span class="bcp14">MUST NOT</span>
affect any previously created connection record (MUST-41).<a href="#section-3.9.1.1-4" class="pilcrow"></a></p>
<p id="section-3.9.1.1-5">
A TCP implementation that supports multiple concurrent connections <span class="bcp14">MUST</span> provide
an OPEN call that will functionally allow an application to
LISTEN on a port while a connection block with the same
local port is in SYN-SENT or SYN-RECEIVED state (MUST-42).<a href="#section-3.9.1.1-5" class="pilcrow"></a></p>
<p id="section-3.9.1.1-6">
On an active OPEN command, the TCP endpoint will begin the procedure to
synchronize (i.e., establish) the connection at once.<a href="#section-3.9.1.1-6" class="pilcrow"></a></p>
<p id="section-3.9.1.1-7">
The timeout, if present, permits the caller to set up a timeout
for all data submitted to TCP. If data is not successfully
delivered to the destination within the timeout period, the TCP endpoint
will abort the connection. The present global default is five
minutes.<a href="#section-3.9.1.1-7" class="pilcrow"></a></p>
<p id="section-3.9.1.1-8">
The TCP implementation or some component of the operating system will verify
the user's authority to open a connection with the specified
Diffserv field value or security/compartment. The absence of a
Diffserv field value
or security/compartment specification in the OPEN call indicates
the default values must be used.<a href="#section-3.9.1.1-8" class="pilcrow"></a></p>
<p id="section-3.9.1.1-9">
TCP will accept incoming requests as matching only if the
security/compartment information is exactly the same as that
requested in the OPEN call.<a href="#section-3.9.1.1-9" class="pilcrow"></a></p>
<p id="section-3.9.1.1-10">
The Diffserv field value indicated by the user only impacts outgoing packets, may be altered en route through the network, and has no direct bearing or relation to received packets.<a href="#section-3.9.1.1-10" class="pilcrow"></a></p>
<p id="section-3.9.1.1-11">
A local connection name will be returned to the user by the TCP implementation.
The local connection name can then be used as a shorthand term
for the connection defined by the &lt;local socket, remote socket&gt;
pair.<a href="#section-3.9.1.1-11" class="pilcrow"></a></p>
<p id="section-3.9.1.1-12">
The optional "local IP address" parameter <span class="bcp14">MUST</span> be supported
to allow the specification of the local IP address (MUST-43). This enables
applications that need to select the local IP address used when
multihoming is present.<a href="#section-3.9.1.1-12" class="pilcrow"></a></p>
<p id="section-3.9.1.1-13">
A passive OPEN call with a specified "local IP address"
parameter will await an incoming connection request to
that address. If the parameter is unspecified, a
passive OPEN will await an incoming connection request
to any local IP address and then bind the local IP
address of the connection to the particular address
that is used.<a href="#section-3.9.1.1-13" class="pilcrow"></a></p>
<p id="section-3.9.1.1-14">
For an active OPEN call, a specified "local IP address" parameter
will be used for opening the connection. If the parameter is unspecified, the
host will choose an appropriate local IP address (see RFC 1122, Section <a href="https://www.rfc-editor.org/rfc/rfc1122#section-3.3.4.2" class="relref">3.3.4.2</a>).<a href="#section-3.9.1.1-14" class="pilcrow"></a></p>
<p id="section-3.9.1.1-15">
If an application on a multihomed host does not specify the
local IP address when actively opening a TCP connection,
then the TCP implementation <span class="bcp14">MUST</span> ask the IP layer to select a local IP
address before sending the (first) SYN (MUST-44). See the function
GET_SRCADDR() in Section <a href="https://www.rfc-editor.org/rfc/rfc1122#section-3.4" class="relref">3.4</a> of RFC 1122.<a href="#section-3.9.1.1-15" class="pilcrow"></a></p>
<p id="section-3.9.1.1-16">
At all other times, a previous segment has either been sent
or received on this connection, and TCP implementations <span class="bcp14">MUST</span> use the same
local address that was used in those previous
segments (MUST-45).<a href="#section-3.9.1.1-16" class="pilcrow"></a></p>
<p id="section-3.9.1.1-17">
A TCP implementation <span class="bcp14">MUST</span> reject as an error a local OPEN
call for an invalid remote IP address (e.g., a broadcast or
multicast address) (MUST-46).<a href="#section-3.9.1.1-17" class="pilcrow"></a></p>
</section>
<section id="section-3.9.1.2">
<h5 id="name-send">
<a href="#section-3.9.1.2" class="section-number selfRef">3.9.1.2. </a><a href="#name-send" class="section-name selfRef">Send</a>
</h5>
<p id="section-3.9.1.2-1">
Format: SEND (local connection name, buffer address, byte
count, URGENT flag [, PUSH flag] [, timeout])<a href="#section-3.9.1.2-1" class="pilcrow"></a></p>
<p id="section-3.9.1.2-2">
This call causes the data contained in the indicated user buffer
to be sent on the indicated connection. If the connection has
not been opened, the SEND is considered an error. Some
implementations may allow users to SEND first; in which case, an
automatic OPEN would be done. For example, this might be one way
for application data to be included in SYN segments. If the calling process is not
authorized to use this connection, an error is returned.<a href="#section-3.9.1.2-2" class="pilcrow"></a></p>
<p id="section-3.9.1.2-3">
A TCP endpoint <span class="bcp14">MAY</span> implement PUSH flags on SEND calls (MAY-15). If PUSH flags are not
implemented, then the sending TCP peer: (1) <span class="bcp14">MUST NOT</span> buffer data indefinitely (MUST-60), and
(2) <span class="bcp14">MUST</span> set the PSH bit in the last buffered segment (i.e., when there is no
more queued data to be sent) (MUST-61). The remaining description below assumes the PUSH
flag is supported on SEND calls.<a href="#section-3.9.1.2-3" class="pilcrow"></a></p>
<p id="section-3.9.1.2-4">
If the PUSH flag is set, the application intends the data to be
transmitted promptly to the receiver, and the PSH bit will be set in the last
TCP segment created from the buffer.<a href="#section-3.9.1.2-4" class="pilcrow"></a></p>
<p id="section-3.9.1.2-5">
The PSH bit is not a record marker and is independent of segment boundaries.
The transmitter <span class="bcp14">SHOULD</span> collapse successive bits when it packetizes data, to
send the largest possible segment (SHLD-27).<a href="#section-3.9.1.2-5" class="pilcrow"></a></p>
<p id="section-3.9.1.2-6">
If the PUSH flag is not set, the data may be combined with data from
subsequent SENDs for transmission efficiency.
When an application issues a series of
SEND calls without setting the PUSH flag, the TCP implementation <span class="bcp14">MAY</span> aggregate the data
internally without sending it (MAY-16).
Note that when the Nagle
algorithm is in use, TCP implementations may buffer the data before sending, without regard to
the PUSH flag (see <a href="#nagle" class="xref">Section 3.7.4</a>).<a href="#section-3.9.1.2-6" class="pilcrow"></a></p>
<p id="section-3.9.1.2-7">
An application program is logically required to set the PUSH flag in a SEND
call whenever it needs to force delivery of the data to avoid a communication
deadlock. However, a TCP implementation <span class="bcp14">SHOULD</span> send a maximum-sized segment whenever
possible (SHLD-28) to improve performance (see <a href="#SWSsender" class="xref">Section 3.8.6.2.1</a>).<a href="#section-3.9.1.2-7" class="pilcrow"></a></p>
<p id="section-3.9.1.2-8">
New applications <span class="bcp14">SHOULD NOT</span> set the URGENT flag <span>[<a href="#RFC6093" class="xref">39</a>]</span> due to implementation differences and middlebox issues (SHLD-13).<a href="#section-3.9.1.2-8" class="pilcrow"></a></p>
<p id="section-3.9.1.2-9">
If the URGENT flag is set, segments sent to the destination TCP peer
will have the urgent pointer set. The receiving TCP peer will signal
the urgent condition to the receiving process if the urgent
pointer indicates that data preceding the urgent pointer has not
been consumed by the receiving process. The purpose of the URGENT flag
is to stimulate the receiver to process the urgent data and to
indicate to the receiver when all the currently known urgent
data has been received. The number of times the sending user's
TCP implementation signals urgent will not necessarily be equal to the number
of times the receiving user will be notified of the presence of
urgent data.<a href="#section-3.9.1.2-9" class="pilcrow"></a></p>
<p id="section-3.9.1.2-10">
If no remote socket was specified in the OPEN, but the
connection is established (e.g., because a LISTENing connection
has become specific due to a remote segment arriving for the
local socket), then the designated buffer is sent to the implied
remote socket. Users who make use of OPEN with an unspecified
remote socket can make use of SEND without ever explicitly
knowing the remote socket address.<a href="#section-3.9.1.2-10" class="pilcrow"></a></p>
<p id="section-3.9.1.2-11">
However, if a SEND is attempted before the remote socket
becomes specified, an error will be returned. Users can use the
STATUS call to determine the status of the connection. Some
TCP implementations may notify the user when an unspecified
socket is bound.<a href="#section-3.9.1.2-11" class="pilcrow"></a></p>
<p id="section-3.9.1.2-12">
If a timeout is specified, the current user timeout for this
connection is changed to the new one.<a href="#section-3.9.1.2-12" class="pilcrow"></a></p>
<p id="section-3.9.1.2-13">
In the simplest implementation, SEND would not return control to
the sending process until either the transmission was complete
or the timeout had been exceeded. However, this simple method
is both subject to deadlocks (for example, both sides of the
connection might try to do SENDs before doing any RECEIVEs) and
offers poor performance, so it is not recommended. A more
sophisticated implementation would return immediately to allow
the process to run concurrently with network I/O, and,
furthermore, to allow multiple SENDs to be in progress.
Multiple SENDs are served in first come, first served order, so
the TCP endpoint will queue those it cannot service immediately.<a href="#section-3.9.1.2-13" class="pilcrow"></a></p>
<p id="section-3.9.1.2-14">
We have implicitly assumed an asynchronous user interface in
which a SEND later elicits some kind of SIGNAL or
pseudo-interrupt from the serving TCP endpoint. An alternative is to
return a response immediately. For instance, SENDs might return
immediate local acknowledgment, even if the segment sent had not
been acknowledged by the distant TCP endpoint. We could optimistically
assume eventual success. If we are wrong, the connection will
close anyway due to the timeout. In implementations of this
kind (synchronous), there will still be some asynchronous
signals, but these will deal with the connection itself, and not
with specific segments or buffers.<a href="#section-3.9.1.2-14" class="pilcrow"></a></p>
<p id="section-3.9.1.2-15">
In order for the process to distinguish among error or success
indications for different SENDs, it might be appropriate for the
buffer address to be returned along with the coded response to
the SEND request. TCP-to-user signals are discussed below,
indicating the information that should be returned to the
calling process.<a href="#section-3.9.1.2-15" class="pilcrow"></a></p>
</section>
<section id="section-3.9.1.3">
<h5 id="name-receive">
<a href="#section-3.9.1.3" class="section-number selfRef">3.9.1.3. </a><a href="#name-receive" class="section-name selfRef">Receive</a>
</h5>
<p id="section-3.9.1.3-1">
Format: RECEIVE (local connection name, buffer address, byte
count) -&gt; byte count, URGENT flag [, PUSH flag]<a href="#section-3.9.1.3-1" class="pilcrow"></a></p>
<p id="section-3.9.1.3-2">
This command allocates a receiving buffer associated with the
specified connection. If no OPEN precedes this command or the
calling process is not authorized to use this connection, an
error is returned.<a href="#section-3.9.1.3-2" class="pilcrow"></a></p>
<p id="section-3.9.1.3-3">
In the simplest implementation, control would not return to the
calling program until either the buffer was filled or some
error occurred, but this scheme is highly subject to deadlocks.
A more sophisticated implementation would permit several
RECEIVEs to be outstanding at once. These would be filled as
segments arrive. This strategy permits increased throughput at
the cost of a more elaborate scheme (possibly asynchronous) to
notify the calling program that a PUSH has been seen or a buffer
filled.<a href="#section-3.9.1.3-3" class="pilcrow"></a></p>
<p id="section-3.9.1.3-4">
A TCP receiver <span class="bcp14">MAY</span> pass a received PSH bit to the application layer via the
PUSH flag in the interface (MAY-17), but it is not required (this was clarified in RFC
1122, Section <a href="https://www.rfc-editor.org/rfc/rfc1122#section-4.2.2.2" class="relref">4.2.2.2</a>). The remainder of text describing the RECEIVE call below
assumes that passing the PUSH indication is supported.<a href="#section-3.9.1.3-4" class="pilcrow"></a></p>
<p id="section-3.9.1.3-5">
If enough data arrive to fill the buffer before a PUSH is seen,
the PUSH flag will not be set in the response to the RECEIVE.
The buffer will be filled with as much data as it can hold. If
a PUSH is seen before the buffer is filled, the buffer will be
returned partially filled and PUSH indicated.<a href="#section-3.9.1.3-5" class="pilcrow"></a></p>
<p id="section-3.9.1.3-6">
If there is urgent data, the user will have been informed as soon
as it arrived via a TCP-to-user signal. The receiving user
should thus be in "urgent mode". If the URGENT flag is on,
additional urgent data remains. If the URGENT flag is off, this
call to RECEIVE has returned all the urgent data, and the user
may now leave "urgent mode". Note that data following the
urgent pointer (non-urgent data) cannot be delivered to the user
in the same buffer with preceding urgent data unless the
boundary is clearly marked for the user.<a href="#section-3.9.1.3-6" class="pilcrow"></a></p>
<p id="section-3.9.1.3-7">
To distinguish among several outstanding RECEIVEs and to take
care of the case that a buffer is not completely filled, the
return code is accompanied by both a buffer pointer and a byte
count indicating the actual length of the data received.<a href="#section-3.9.1.3-7" class="pilcrow"></a></p>
<p id="section-3.9.1.3-8">
Alternative implementations of RECEIVE might have the TCP endpoint
allocate buffer storage, or the TCP endpoint might share a ring buffer
with the user.<a href="#section-3.9.1.3-8" class="pilcrow"></a></p>
</section>
<section id="section-3.9.1.4">
<h5 id="name-close">
<a href="#section-3.9.1.4" class="section-number selfRef">3.9.1.4. </a><a href="#name-close" class="section-name selfRef">Close</a>
</h5>
<p id="section-3.9.1.4-1">
Format: CLOSE (local connection name)<a href="#section-3.9.1.4-1" class="pilcrow"></a></p>
<p id="section-3.9.1.4-2">
This command causes the connection specified to be closed. If
the connection is not open or the calling process is not
authorized to use this connection, an error is returned.
Closing connections is intended to be a graceful operation in
the sense that outstanding SENDs will be transmitted (and
retransmitted), as flow control permits, until all have been
serviced. Thus, it should be acceptable to make several SEND
calls, followed by a CLOSE, and expect all the data to be sent
to the destination. It should also be clear that users should
continue to RECEIVE on CLOSING connections since the remote peer
may be trying to transmit the last of its data. Thus, CLOSE
means "I have no more to send" but does not mean "I will not
receive any more." It may happen (if the user-level protocol is
not well thought out) that the closing side is unable to get rid
of all its data before timing out. In this event, CLOSE turns
into ABORT, and the closing TCP peer gives up.<a href="#section-3.9.1.4-2" class="pilcrow"></a></p>
<p id="section-3.9.1.4-3">
The user may CLOSE the connection at any time on their own
initiative, or in response to various prompts from the TCP implementation
(e.g., remote close executed, transmission timeout exceeded,
destination inaccessible).<a href="#section-3.9.1.4-3" class="pilcrow"></a></p>
<p id="section-3.9.1.4-4">
Because closing a connection requires communication with the
remote TCP peer, connections may remain in the closing state for a
short time. Attempts to reopen the connection before the TCP peer
replies to the CLOSE command will result in error responses.<a href="#section-3.9.1.4-4" class="pilcrow"></a></p>
<p id="section-3.9.1.4-5">
Close also implies push function.<a href="#section-3.9.1.4-5" class="pilcrow"></a></p>
</section>
<section id="section-3.9.1.5">
<h5 id="name-status">
<a href="#section-3.9.1.5" class="section-number selfRef">3.9.1.5. </a><a href="#name-status" class="section-name selfRef">Status</a>
</h5>
<p id="section-3.9.1.5-1">
Format: STATUS (local connection name) -&gt; status data<a href="#section-3.9.1.5-1" class="pilcrow"></a></p>
<p id="section-3.9.1.5-2">
This is an implementation-dependent user command and could be
excluded without adverse effect. Information returned would
typically come from the TCB associated with the connection.<a href="#section-3.9.1.5-2" class="pilcrow"></a></p>
<p id="section-3.9.1.5-3">
This command returns a data block containing the following
information:<a href="#section-3.9.1.5-3" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.9.1.5-4.1">local socket,<a href="#section-3.9.1.5-4.1" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.9.1.5-4.2">
remote socket,<a href="#section-3.9.1.5-4.2" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.9.1.5-4.3">
local connection name,<a href="#section-3.9.1.5-4.3" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.9.1.5-4.4">
receive window,<a href="#section-3.9.1.5-4.4" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.9.1.5-4.5">
send window,<a href="#section-3.9.1.5-4.5" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.9.1.5-4.6">
connection state,<a href="#section-3.9.1.5-4.6" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.9.1.5-4.7">
number of buffers awaiting acknowledgment,<a href="#section-3.9.1.5-4.7" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.9.1.5-4.8">
number of buffers pending receipt,<a href="#section-3.9.1.5-4.8" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.9.1.5-4.9">
urgent state,<a href="#section-3.9.1.5-4.9" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.9.1.5-4.10">
Diffserv field value,<a href="#section-3.9.1.5-4.10" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.9.1.5-4.11">
security/compartment, and<a href="#section-3.9.1.5-4.11" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.9.1.5-4.12">
transmission timeout.<a href="#section-3.9.1.5-4.12" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.9.1.5-5">
Depending on the state of the connection, or on the
implementation itself, some of this information may not be
available or meaningful. If the calling process is not
authorized to use this connection, an error is returned. This
prevents unauthorized processes from gaining information about a
connection.<a href="#section-3.9.1.5-5" class="pilcrow"></a></p>
</section>
<section id="section-3.9.1.6">
<h5 id="name-abort">
<a href="#section-3.9.1.6" class="section-number selfRef">3.9.1.6. </a><a href="#name-abort" class="section-name selfRef">Abort</a>
</h5>
<p id="section-3.9.1.6-1">
Format: ABORT (local connection name)<a href="#section-3.9.1.6-1" class="pilcrow"></a></p>
<p id="section-3.9.1.6-2">
This command causes all pending SENDs and RECEIVES to be
aborted, the TCB to be removed, and a special RST message to
be sent to the remote TCP peer of the connection.
Depending on the implementation, users may receive abort
indications for each outstanding SEND or RECEIVE, or may simply
receive an ABORT-acknowledgment.<a href="#section-3.9.1.6-2" class="pilcrow"></a></p>
</section>
<section id="section-3.9.1.7">
<h5 id="name-flush">
<a href="#section-3.9.1.7" class="section-number selfRef">3.9.1.7. </a><a href="#name-flush" class="section-name selfRef">Flush</a>
</h5>
<p id="section-3.9.1.7-1">
Some TCP implementations have included a FLUSH call, which
will empty the TCP send queue of any data that the user
has issued SEND calls for but is still to the right of the
current send window. That is, it flushes as much queued
send data as possible without losing sequence number
synchronization. The FLUSH call <span class="bcp14">MAY</span> be implemented (MAY-14).<a href="#section-3.9.1.7-1" class="pilcrow"></a></p>
</section>
<div id="asynchronous-reports">
<section id="section-3.9.1.8">
<h5 id="name-asynchronous-reports">
<a href="#section-3.9.1.8" class="section-number selfRef">3.9.1.8. </a><a href="#name-asynchronous-reports" class="section-name selfRef">Asynchronous Reports</a>
</h5>
<p id="section-3.9.1.8-1">
There <span class="bcp14">MUST</span> be a mechanism for reporting soft TCP error
conditions to the application (MUST-47). Generically, we assume this
takes the form of an application-supplied ERROR_REPORT
routine that may be upcalled asynchronously from
the transport layer:<a href="#section-3.9.1.8-1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.9.1.8-2.1">
ERROR_REPORT(local connection name, reason, subreason)<a href="#section-3.9.1.8-2.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.9.1.8-3">
The precise encoding of the reason and subreason parameters
is not specified here. However, the conditions that are
reported asynchronously to the application <span class="bcp14">MUST</span> include:<a href="#section-3.9.1.8-3" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.9.1.8-4.1">
ICMP error message arrived (see <a href="#icmp" class="xref">Section 3.9.2.2</a> for description of handling each ICMP message type since some message types need to be suppressed from generating reports to the application)<a href="#section-3.9.1.8-4.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.9.1.8-4.2">
Excessive retransmissions (see <a href="#connfail" class="xref">Section 3.8.3</a>)<a href="#section-3.9.1.8-4.2" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.9.1.8-4.3">
Urgent pointer advance (see <a href="#urgent" class="xref">Section 3.8.5</a>)<a href="#section-3.9.1.8-4.3" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.9.1.8-5">
However, an application program that does not want to
receive such ERROR_REPORT calls <span class="bcp14">SHOULD</span> be able to
effectively disable these calls (SHLD-20).<a href="#section-3.9.1.8-5" class="pilcrow"></a></p>
</section>
</div>
<section id="section-3.9.1.9">
<h5 id="name-set-differentiated-services">
<a href="#section-3.9.1.9" class="section-number selfRef">3.9.1.9. </a><a href="#name-set-differentiated-services" class="section-name selfRef">Set Differentiated Services Field (IPv4 TOS or IPv6 Traffic Class)</a>
</h5>
<p id="section-3.9.1.9-1">
The application layer <span class="bcp14">MUST</span> be able to specify the Differentiated Services field
for segments that are sent on a connection (MUST-48). The Differentiated Services field includes the 6-bit Differentiated Services Codepoint (DSCP) value.
It is not required, but the application <span class="bcp14">SHOULD</span> be able to
change the Differentiated Services field during the connection lifetime (SHLD-21). TCP implementations <span class="bcp14">SHOULD</span>
pass the current Differentiated Services field value without change to the IP layer,
when it sends segments on the connection (SHLD-22).<a href="#section-3.9.1.9-1" class="pilcrow"></a></p>
<p id="section-3.9.1.9-2">
The Differentiated Services field will be specified independently in each direction on
the connection, so that the receiver application will
specify the Differentiated Services field used for ACK segments.<a href="#section-3.9.1.9-2" class="pilcrow"></a></p>
<p id="section-3.9.1.9-3">
TCP implementations <span class="bcp14">MAY</span> pass the most recently received Differentiated Services field up to the
application (MAY-9).<a href="#section-3.9.1.9-3" class="pilcrow"></a></p>
</section>
</section>
</div>
<section id="section-3.9.2">
<h4 id="name-tcp-lower-level-interface">
<a href="#section-3.9.2" class="section-number selfRef">3.9.2. </a><a href="#name-tcp-lower-level-interface" class="section-name selfRef">TCP/Lower-Level Interface</a>
</h4>
<p id="section-3.9.2-1">
The TCP endpoint calls on a lower-level protocol module to actually send and
receive information over a network. The two current standard Internet Protocol (IP) versions layered below TCP are IPv4 <span>[<a href="#RFC0791" class="xref">1</a>]</span> and IPv6 <span>[<a href="#RFC8200" class="xref">13</a>]</span>.<a href="#section-3.9.2-1" class="pilcrow"></a></p>
<p id="section-3.9.2-2">
If the lower-level protocol is IPv4, it provides arguments for a type
of service (used within the Differentiated Services field) and for a time to live. TCP uses the following settings
for these parameters:<a href="#section-3.9.2-2" class="pilcrow"></a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.9.2-3">
<dt id="section-3.9.2-3.1">
Diffserv field:</dt>
<dd style="margin-left: 1.5em" id="section-3.9.2-3.2">The IP header value for the Diffserv field is given by the user. This includes the bits of the Diffserv Codepoint (DSCP).<a href="#section-3.9.2-3.2" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-3.9.2-3.3">
Time to Live (TTL):</dt>
<dd style="margin-left: 1.5em" id="section-3.9.2-3.4">
<p id="section-3.9.2-3.4.1">The TTL value used to send TCP segments <span class="bcp14">MUST</span> be configurable (MUST-49).<a href="#section-3.9.2-3.4.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.9.2-3.4.2.1">
Note that RFC 793 specified one minute (60 seconds) as a constant for
the TTL because the assumed maximum segment lifetime was two minutes. This was
intended to explicitly ask that a segment be destroyed if it could not be
delivered by the internet system within one minute. RFC 1122 updated RFC 793 to require that the TTL be configurable.<a href="#section-3.9.2-3.4.2.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.9.2-3.4.2.2">
Note that the Diffserv field is permitted to change during a connection
(Section <a href="https://www.rfc-editor.org/rfc/rfc1122#section-4.2.4.2" class="relref">4.2.4.2</a> of RFC 1122). However, the application interface might
not support this ability, and the application does not have knowledge
about individual TCP segments, so this can only be done on a coarse
granularity, at best. This limitation is further discussed in RFC 7657
(Sections <a href="https://www.rfc-editor.org/rfc/rfc7657#section-5.1" class="relref">5.1</a>, <a href="https://www.rfc-editor.org/rfc/rfc7657#section-5.3" class="relref">5.3</a>, and <a href="https://www.rfc-editor.org/rfc/rfc7657#section-6" class="relref">6</a>) <span>[<a href="#RFC7657" class="xref">50</a>]</span>. Generally, an
application <span class="bcp14">SHOULD NOT</span> change the Diffserv field value during the course
of a connection (SHLD-23).<a href="#section-3.9.2-3.4.2.2" class="pilcrow"></a>
</li>
</ul>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-3.9.2-4">
Any lower-level protocol will have to provide the source address,
destination address, and protocol fields, and some way to determine
the "TCP length", both to provide the functional equivalent service
of IP and to be used in the TCP checksum.<a href="#section-3.9.2-4" class="pilcrow"></a></p>
<p id="section-3.9.2-5">
When received options are passed up to TCP from the IP
layer, a TCP implementation <span class="bcp14">MUST</span> ignore options that it does not understand (MUST-50).<a href="#section-3.9.2-5" class="pilcrow"></a></p>
<p id="section-3.9.2-6">
A TCP implementation <span class="bcp14">MAY</span> support the Timestamp (MAY-10) and Record Route (MAY-11) Options.<a href="#section-3.9.2-6" class="pilcrow"></a></p>
<section id="section-3.9.2.1">
<h5 id="name-source-routing">
<a href="#section-3.9.2.1" class="section-number selfRef">3.9.2.1. </a><a href="#name-source-routing" class="section-name selfRef">Source Routing</a>
</h5>
<p id="section-3.9.2.1-1">
If the lower level is IP (or other protocol that provides this
feature) and source routing is used, the interface must allow the
route information to be communicated. This is especially important
so that the source and destination addresses used in the TCP
checksum be the originating source and ultimate destination. It is
also important to preserve the return route to answer connection
requests.<a href="#section-3.9.2.1-1" class="pilcrow"></a></p>
<p id="section-3.9.2.1-2">
An application <span class="bcp14">MUST</span> be able to specify a source route when
it actively opens a TCP connection (MUST-51), and this <span class="bcp14">MUST</span> take
precedence over a source route received in a datagram (MUST-52).<a href="#section-3.9.2.1-2" class="pilcrow"></a></p>
<p id="section-3.9.2.1-3">
When a TCP connection is OPENed passively and a packet
arrives with a completed IP Source Route Option (containing
a return route), TCP implementations <span class="bcp14">MUST</span> save the return route and use it
for all segments sent on this connection (MUST-53). If a different
source route arrives in a later segment, the later
definition <span class="bcp14">SHOULD</span> override the earlier one (SHLD-24).<a href="#section-3.9.2.1-3" class="pilcrow"></a></p>
</section>
<div id="icmp">
<section id="section-3.9.2.2">
<h5 id="name-icmp-messages">
<a href="#section-3.9.2.2" class="section-number selfRef">3.9.2.2. </a><a href="#name-icmp-messages" class="section-name selfRef">ICMP Messages</a>
</h5>
<p id="section-3.9.2.2-1">
TCP implementations <span class="bcp14">MUST</span> act on an ICMP error message passed up from the IP
layer, directing it to the connection that created the
error (MUST-54). The necessary demultiplexing information can be
found in the IP header contained within the ICMP message.<a href="#section-3.9.2.2-1" class="pilcrow"></a></p>
<p id="section-3.9.2.2-2">
This applies to ICMPv6 in addition to IPv4 ICMP.<a href="#section-3.9.2.2-2" class="pilcrow"></a></p>
<p id="section-3.9.2.2-3">
<span>[<a href="#RFC5461" class="xref">35</a>]</span> contains discussion of specific ICMP and ICMPv6 messages classified as either "soft" or "hard" errors that may bear different responses. Treatment for classes of ICMP messages is described below:<a href="#section-3.9.2.2-3" class="pilcrow"></a></p>
<span class="break"></span><dl class="dlNewline" id="section-3.9.2.2-4">
<dt id="section-3.9.2.2-4.1">Source Quench</dt>
<dd style="margin-left: 1.0em" id="section-3.9.2.2-4.2">
TCP implementations <span class="bcp14">MUST</span> silently discard any received ICMP Source Quench messages (MUST-55). See <span>[<a href="#RFC6633" class="xref">11</a>]</span> for discussion.<a href="#section-3.9.2.2-4.2" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-3.9.2.2-4.3">Soft Errors</dt>
<dd style="margin-left: 1.0em" id="section-3.9.2.2-4.4">
<p id="section-3.9.2.2-4.4.1">
For IPv4 ICMP, these include: Destination Unreachable -- codes 0, 1, 5; Time Exceeded -- codes 0, 1; and Parameter Problem.<a href="#section-3.9.2.2-4.4.1" class="pilcrow"></a></p>
<p id="section-3.9.2.2-4.4.2">
For ICMPv6, these include: Destination Unreachable -- codes 0, 3; Time Exceeded -- codes 0, 1; and Parameter Problem -- codes 0, 1, 2.<a href="#section-3.9.2.2-4.4.2" class="pilcrow"></a></p>
<p id="section-3.9.2.2-4.4.3">
Since these Unreachable messages indicate soft error
conditions, a TCP implementation <span class="bcp14">MUST NOT</span> abort the connection (MUST-56), and it
<span class="bcp14">SHOULD</span> make the information available to the
application (SHLD-25).<a href="#section-3.9.2.2-4.4.3" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
<dt id="section-3.9.2.2-4.5">Hard Errors</dt>
<dd style="margin-left: 1.0em" id="section-3.9.2.2-4.6">
<p id="section-3.9.2.2-4.6.1">
For ICMP these include Destination Unreachable -- codes 2-4.<a href="#section-3.9.2.2-4.6.1" class="pilcrow"></a></p>
<p id="section-3.9.2.2-4.6.2">
These are hard error conditions, so TCP implementations <span class="bcp14">SHOULD</span> abort
the connection (SHLD-26). <span>[<a href="#RFC5461" class="xref">35</a>]</span> notes that
some implementations do not abort connections when an
ICMP hard error is received for a connection that is
in any of the synchronized states.<a href="#section-3.9.2.2-4.6.2" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-3.9.2.2-5">
Note that <span>[<a href="#RFC5461" class="xref">35</a>], <a href="https://www.rfc-editor.org/rfc/rfc5461#section-4" class="relref">Section 4</a></span> describes widespread implementation behavior that treats soft errors as hard errors during connection establishment.<a href="#section-3.9.2.2-5" class="pilcrow"></a></p>
</section>
</div>
<section id="section-3.9.2.3">
<h5 id="name-source-address-validation">
<a href="#section-3.9.2.3" class="section-number selfRef">3.9.2.3. </a><a href="#name-source-address-validation" class="section-name selfRef">Source Address Validation</a>
</h5>
<p id="section-3.9.2.3-1">
RFC 1122 requires addresses to be validated in incoming SYN packets:<a href="#section-3.9.2.3-1" class="pilcrow"></a></p>
<blockquote id="section-3.9.2.3-2">
<p id="section-3.9.2.3-2.1">
An incoming SYN with an invalid source address <span class="bcp14">MUST</span> be
ignored either by TCP or by the IP layer [(MUST-63)] (see Section
<a href="https://www.rfc-editor.org/rfc/rfc1122#section-3.2.1.3" class="relref">3.2.1.3</a>).<a href="#section-3.9.2.3-2.1" class="pilcrow"></a></p>
<p id="section-3.9.2.3-2.2">
A TCP implementation <span class="bcp14">MUST</span> silently discard an incoming SYN
segment that is addressed to a broadcast or multicast
address [(MUST-57)].<a href="#section-3.9.2.3-2.2" class="pilcrow"></a></p>
</blockquote>
<p id="section-3.9.2.3-3">This prevents connection state and replies from being erroneously generated, and implementers should note that this guidance is applicable to all incoming segments, not just SYNs, as specifically indicated in RFC 1122.<a href="#section-3.9.2.3-3" class="pilcrow"></a></p>
</section>
</section>
</section>
<section id="section-3.10">
<h3 id="name-event-processing">
<a href="#section-3.10" class="section-number selfRef">3.10. </a><a href="#name-event-processing" class="section-name selfRef">Event Processing</a>
</h3>
<p id="section-3.10-1">
The processing depicted in this section is an example of one possible
implementation. Other implementations may have slightly different
processing sequences, but they should differ from those in this
section only in detail, not in substance.<a href="#section-3.10-1" class="pilcrow"></a></p>
<p id="section-3.10-2">
The activity of the TCP endpoint can be characterized as responding to events.
The events that occur can be cast into three categories: user calls,
arriving segments, and timeouts. This section describes the
processing the TCP endpoint does in response to each of the events. In many
cases, the processing required depends on the state of the connection.<a href="#section-3.10-2" class="pilcrow"></a></p>
<p id="section-3.10-3">
Events that occur:<a href="#section-3.10-3" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10-4.1">
<p id="section-3.10-4.1.1">User Calls<a href="#section-3.10-4.1.1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10-4.1.2.1">OPEN<a href="#section-3.10-4.1.2.1" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.10-4.1.2.2">SEND<a href="#section-3.10-4.1.2.2" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.10-4.1.2.3">RECEIVE<a href="#section-3.10-4.1.2.3" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.10-4.1.2.4">CLOSE<a href="#section-3.10-4.1.2.4" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.10-4.1.2.5">ABORT<a href="#section-3.10-4.1.2.5" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.10-4.1.2.6">STATUS<a href="#section-3.10-4.1.2.6" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal ulEmpty" id="section-3.10-4.2">
<p id="section-3.10-4.2.1">Arriving Segments<a href="#section-3.10-4.2.1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10-4.2.2.1">SEGMENT ARRIVES<a href="#section-3.10-4.2.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal ulEmpty" id="section-3.10-4.3">
<p id="section-3.10-4.3.1">Timeouts<a href="#section-3.10-4.3.1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10-4.3.2.1">USER TIMEOUT<a href="#section-3.10-4.3.2.1" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.10-4.3.2.2">RETRANSMISSION TIMEOUT<a href="#section-3.10-4.3.2.2" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.10-4.3.2.3">TIME-WAIT TIMEOUT<a href="#section-3.10-4.3.2.3" class="pilcrow"></a>
</li>
</ul>
</li>
</ul>
<p id="section-3.10-5">
The model of the TCP/user interface is that user commands receive an
immediate return and possibly a delayed response via an event or
pseudo-interrupt. In the following descriptions, the term "signal"
means cause a delayed response.<a href="#section-3.10-5" class="pilcrow"></a></p>
<p id="section-3.10-6">
Error responses in this document are identified by character strings. For example, user
commands referencing connections that do not exist receive "error:
connection not open".<a href="#section-3.10-6" class="pilcrow"></a></p>
<p id="section-3.10-7">
Please note in the following that all arithmetic on sequence numbers,
acknowledgment numbers, windows, et cetera, is modulo 2<sup>32</sup> (the size
of the sequence number space). Also note that "=&lt;" means less than or
equal to (modulo 2<sup>32</sup>).<a href="#section-3.10-7" class="pilcrow"></a></p>
<p id="section-3.10-8">
A natural way to think about processing incoming segments is to
imagine that they are first tested for proper sequence number (i.e.,
that their contents lie in the range of the expected "receive window"
in the sequence number space) and then that they are generally queued
and processed in sequence number order.<a href="#section-3.10-8" class="pilcrow"></a></p>
<p id="section-3.10-9">
When a segment overlaps other already received segments, we reconstruct
the segment to contain just the new data and adjust the header fields
to be consistent.<a href="#section-3.10-9" class="pilcrow"></a></p>
<p id="section-3.10-10">
Note that if no state change is mentioned, the TCP connection stays in the same
state.<a href="#section-3.10-10" class="pilcrow"></a></p>
<section id="section-3.10.1">
<h4 id="name-open-call">
<a href="#section-3.10.1" class="section-number selfRef">3.10.1. </a><a href="#name-open-call" class="section-name selfRef">OPEN Call</a>
</h4>
<p id="section-3.10.1-1">CLOSED STATE (i.e., TCB does not exist)<a href="#section-3.10.1-1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.1-2.1">
Create a new transmission control block (TCB) to hold connection
state information. Fill in local socket identifier, remote
socket, Diffserv field, security/compartment, and user timeout
information. Note that some parts of the remote socket may be
unspecified in a passive OPEN and are to be filled in by the
parameters of the incoming SYN segment. Verify the security and
Diffserv value requested are allowed for this user, if not, return
"error: Diffserv value not allowed" or "error: security/compartment
not allowed". If passive, enter the LISTEN state and return. If
active and the remote socket is unspecified, return "error:
remote socket unspecified"; if active and the remote socket is
specified, issue a SYN segment. An initial send sequence number
(ISS) is selected. A SYN segment of the form &lt;SEQ=ISS&gt;&lt;CTL=SYN&gt;
is sent. Set SND.UNA to ISS, SND.NXT to ISS+1, enter SYN-SENT
state, and return.<a href="#section-3.10.1-2.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.1-2.2">
If the caller does not have access to the local socket specified,
return "error: connection illegal for this process". If there is
no room to create a new connection, return "error: insufficient
resources".<a href="#section-3.10.1-2.2" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.1-3">LISTEN STATE<a href="#section-3.10.1-3" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.1-4.1">
If the OPEN call is active and the remote socket is specified, then change the
connection from passive to active, select an ISS. Send a SYN
segment, set SND.UNA to ISS, SND.NXT to ISS+1. Enter SYN-SENT
state. Data associated with SEND may be sent with SYN segment or
queued for transmission after entering ESTABLISHED state. The
urgent bit if requested in the command must be sent with the data
segments sent as a result of this command. If there is no room to
queue the request, respond with "error: insufficient resources".
If the remote socket was not specified, then return "error: remote
socket unspecified".<a href="#section-3.10.1-4.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.1-5">SYN-SENT STATE<a href="#section-3.10.1-5" class="pilcrow"></a></p>
<p id="section-3.10.1-6">
SYN-RECEIVED STATE<a href="#section-3.10.1-6" class="pilcrow"></a></p>
<p id="section-3.10.1-7">
ESTABLISHED STATE<a href="#section-3.10.1-7" class="pilcrow"></a></p>
<p id="section-3.10.1-8">
FIN-WAIT-1 STATE<a href="#section-3.10.1-8" class="pilcrow"></a></p>
<p id="section-3.10.1-9">
FIN-WAIT-2 STATE<a href="#section-3.10.1-9" class="pilcrow"></a></p>
<p id="section-3.10.1-10">
CLOSE-WAIT STATE<a href="#section-3.10.1-10" class="pilcrow"></a></p>
<p id="section-3.10.1-11">
CLOSING STATE<a href="#section-3.10.1-11" class="pilcrow"></a></p>
<p id="section-3.10.1-12">
LAST-ACK STATE<a href="#section-3.10.1-12" class="pilcrow"></a></p>
<p id="section-3.10.1-13">
TIME-WAIT STATE<a href="#section-3.10.1-13" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.1-14.1">Return "error: connection already exists".<a href="#section-3.10.1-14.1" class="pilcrow"></a>
</li>
</ul>
</section>
<section id="section-3.10.2">
<h4 id="name-send-call">
<a href="#section-3.10.2" class="section-number selfRef">3.10.2. </a><a href="#name-send-call" class="section-name selfRef">SEND Call</a>
</h4>
<p id="section-3.10.2-1">
CLOSED STATE (i.e., TCB does not exist)<a href="#section-3.10.2-1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.2-2.1">
If the user does not have access to such a connection, then return
"error: connection illegal for this process".<a href="#section-3.10.2-2.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.2-2.2">
Otherwise, return "error: connection does not exist".<a href="#section-3.10.2-2.2" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.2-3">
LISTEN STATE<a href="#section-3.10.2-3" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.2-4.1">
If the remote socket is specified, then change the connection
from passive to active, select an ISS. Send a SYN segment, set
SND.UNA to ISS, SND.NXT to ISS+1. Enter SYN-SENT state. Data
associated with SEND may be sent with SYN segment or queued for
transmission after entering ESTABLISHED state. The urgent bit if
requested in the command must be sent with the data segments sent
as a result of this command. If there is no room to queue the
request, respond with "error: insufficient resources". If
the remote socket was not specified, then return "error: remote
socket unspecified".<a href="#section-3.10.2-4.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.2-5">
SYN-SENT STATE<a href="#section-3.10.2-5" class="pilcrow"></a></p>
<p id="section-3.10.2-6">
SYN-RECEIVED STATE<a href="#section-3.10.2-6" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.2-7.1">
Queue the data for transmission after entering ESTABLISHED state.
If no space to queue, respond with "error: insufficient
resources".<a href="#section-3.10.2-7.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.2-8">
ESTABLISHED STATE<a href="#section-3.10.2-8" class="pilcrow"></a></p>
<p id="section-3.10.2-9">
CLOSE-WAIT STATE<a href="#section-3.10.2-9" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.2-10.1">
Segmentize the buffer and send it with a piggybacked
acknowledgment (acknowledgment value = RCV.NXT). If there is
insufficient space to remember this buffer, simply return "error:
insufficient resources".<a href="#section-3.10.2-10.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.2-10.2">
If the URGENT flag is set, then SND.UP &lt;- SND.NXT and set the
urgent pointer in the outgoing segments.<a href="#section-3.10.2-10.2" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.2-11">
FIN-WAIT-1 STATE<a href="#section-3.10.2-11" class="pilcrow"></a></p>
<p id="section-3.10.2-12">
FIN-WAIT-2 STATE<a href="#section-3.10.2-12" class="pilcrow"></a></p>
<p id="section-3.10.2-13">
CLOSING STATE<a href="#section-3.10.2-13" class="pilcrow"></a></p>
<p id="section-3.10.2-14">
LAST-ACK STATE<a href="#section-3.10.2-14" class="pilcrow"></a></p>
<p id="section-3.10.2-15">
TIME-WAIT STATE<a href="#section-3.10.2-15" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.2-16.1">
Return "error: connection closing" and do not service request.<a href="#section-3.10.2-16.1" class="pilcrow"></a>
</li>
</ul>
</section>
<section id="section-3.10.3">
<h4 id="name-receive-call">
<a href="#section-3.10.3" class="section-number selfRef">3.10.3. </a><a href="#name-receive-call" class="section-name selfRef">RECEIVE Call</a>
</h4>
<p id="section-3.10.3-1">
CLOSED STATE (i.e., TCB does not exist)<a href="#section-3.10.3-1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.3-2.1">
If the user does not have access to such a connection, return
"error: connection illegal for this process".<a href="#section-3.10.3-2.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.3-2.2">
Otherwise, return "error: connection does not exist".<a href="#section-3.10.3-2.2" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.3-3">
LISTEN STATE<a href="#section-3.10.3-3" class="pilcrow"></a></p>
<p id="section-3.10.3-4">
SYN-SENT STATE<a href="#section-3.10.3-4" class="pilcrow"></a></p>
<p id="section-3.10.3-5">
SYN-RECEIVED STATE<a href="#section-3.10.3-5" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.3-6.1">
Queue for processing after entering ESTABLISHED state. If there
is no room to queue this request, respond with "error:
insufficient resources".<a href="#section-3.10.3-6.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.3-7">
ESTABLISHED STATE<a href="#section-3.10.3-7" class="pilcrow"></a></p>
<p id="section-3.10.3-8">
FIN-WAIT-1 STATE<a href="#section-3.10.3-8" class="pilcrow"></a></p>
<p id="section-3.10.3-9">
FIN-WAIT-2 STATE<a href="#section-3.10.3-9" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.3-10.1">
If insufficient incoming segments are queued to satisfy the
request, queue the request. If there is no queue space to
remember the RECEIVE, respond with "error: insufficient
resources".<a href="#section-3.10.3-10.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.3-10.2">
Reassemble queued incoming segments into receive buffer and return
to user. Mark "push seen" (PUSH) if this is the case.<a href="#section-3.10.3-10.2" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.3-10.3">
If RCV.UP is in advance of the data currently being passed to the
user, notify the user of the presence of urgent data.<a href="#section-3.10.3-10.3" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.3-10.4">
When the TCP endpoint takes responsibility for delivering data to the user,
that fact must be communicated to the sender via an
acknowledgment. The formation of such an acknowledgment is
described below in the discussion of processing an incoming
segment.<a href="#section-3.10.3-10.4" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.3-11">
CLOSE-WAIT STATE<a href="#section-3.10.3-11" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.3-12.1">
Since the remote side has already sent FIN, RECEIVEs must be
satisfied by data already on hand, but not yet delivered to the
user. If no text is awaiting delivery, the RECEIVE will get an
"error: connection closing" response. Otherwise, any remaining
data can be used to satisfy the RECEIVE.<a href="#section-3.10.3-12.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.3-13">
CLOSING STATE<a href="#section-3.10.3-13" class="pilcrow"></a></p>
<p id="section-3.10.3-14">
LAST-ACK STATE<a href="#section-3.10.3-14" class="pilcrow"></a></p>
<p id="section-3.10.3-15">
TIME-WAIT STATE<a href="#section-3.10.3-15" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.3-16.1">
Return "error: connection closing".<a href="#section-3.10.3-16.1" class="pilcrow"></a>
</li>
</ul>
</section>
<section id="section-3.10.4">
<h4 id="name-close-call">
<a href="#section-3.10.4" class="section-number selfRef">3.10.4. </a><a href="#name-close-call" class="section-name selfRef">CLOSE Call</a>
</h4>
<p id="section-3.10.4-1">
CLOSED STATE (i.e., TCB does not exist)<a href="#section-3.10.4-1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.4-2.1">
If the user does not have access to such a connection, return
"error: connection illegal for this process".<a href="#section-3.10.4-2.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.4-2.2">
Otherwise, return "error: connection does not exist".<a href="#section-3.10.4-2.2" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.4-3">
LISTEN STATE<a href="#section-3.10.4-3" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.4-4.1">
Any outstanding RECEIVEs are returned with "error: closing"
responses. Delete TCB, enter CLOSED state, and return.<a href="#section-3.10.4-4.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.4-5">
SYN-SENT STATE<a href="#section-3.10.4-5" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.4-6.1">
Delete the TCB and return "error: closing" responses to any
queued SENDs, or RECEIVEs.<a href="#section-3.10.4-6.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.4-7">
SYN-RECEIVED STATE<a href="#section-3.10.4-7" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.4-8.1">
If no SENDs have been issued and there is no pending data to send,
then form a FIN segment and send it, and enter FIN-WAIT-1 state;
otherwise, queue for processing after entering ESTABLISHED state.<a href="#section-3.10.4-8.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.4-9">
ESTABLISHED STATE<a href="#section-3.10.4-9" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.4-10.1">
Queue this until all preceding SENDs have been segmentized, then
form a FIN segment and send it. In any case, enter FIN-WAIT-1
state.<a href="#section-3.10.4-10.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.4-11">
FIN-WAIT-1 STATE<a href="#section-3.10.4-11" class="pilcrow"></a></p>
<p id="section-3.10.4-12">
FIN-WAIT-2 STATE<a href="#section-3.10.4-12" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.4-13.1">
Strictly speaking, this is an error and should receive an "error:
connection closing" response. An "ok" response would be
acceptable, too, as long as a second FIN is not emitted (the first
FIN may be retransmitted, though).<a href="#section-3.10.4-13.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.4-14">
CLOSE-WAIT STATE<a href="#section-3.10.4-14" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.4-15.1">
Queue this request until all preceding SENDs have been
segmentized; then send a FIN segment, enter LAST-ACK state.<a href="#section-3.10.4-15.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.4-16">
CLOSING STATE<a href="#section-3.10.4-16" class="pilcrow"></a></p>
<p id="section-3.10.4-17">
LAST-ACK STATE<a href="#section-3.10.4-17" class="pilcrow"></a></p>
<p id="section-3.10.4-18">
TIME-WAIT STATE<a href="#section-3.10.4-18" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.4-19.1">
Respond with "error: connection closing".<a href="#section-3.10.4-19.1" class="pilcrow"></a>
</li>
</ul>
</section>
<section id="section-3.10.5">
<h4 id="name-abort-call">
<a href="#section-3.10.5" class="section-number selfRef">3.10.5. </a><a href="#name-abort-call" class="section-name selfRef">ABORT Call</a>
</h4>
<p id="section-3.10.5-1">
CLOSED STATE (i.e., TCB does not exist)<a href="#section-3.10.5-1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.5-2.1">
If the user should not have access to such a connection, return
"error: connection illegal for this process".<a href="#section-3.10.5-2.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.5-2.2">
Otherwise, return "error: connection does not exist".<a href="#section-3.10.5-2.2" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.5-3">
LISTEN STATE<a href="#section-3.10.5-3" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.5-4.1">
Any outstanding RECEIVEs should be returned with "error:
connection reset" responses. Delete TCB, enter CLOSED state, and
return.<a href="#section-3.10.5-4.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.5-5">
SYN-SENT STATE<a href="#section-3.10.5-5" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.5-6.1">
All queued SENDs and RECEIVEs should be given "connection reset"
notification. Delete the TCB, enter CLOSED state, and return.<a href="#section-3.10.5-6.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.5-7">
SYN-RECEIVED STATE<a href="#section-3.10.5-7" class="pilcrow"></a></p>
<p id="section-3.10.5-8">
ESTABLISHED STATE<a href="#section-3.10.5-8" class="pilcrow"></a></p>
<p id="section-3.10.5-9">
FIN-WAIT-1 STATE<a href="#section-3.10.5-9" class="pilcrow"></a></p>
<p id="section-3.10.5-10">
FIN-WAIT-2 STATE<a href="#section-3.10.5-10" class="pilcrow"></a></p>
<p id="section-3.10.5-11">
CLOSE-WAIT STATE<a href="#section-3.10.5-11" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.5-12.1">
<p id="section-3.10.5-12.1.1">
Send a reset segment:<a href="#section-3.10.5-12.1.1" class="pilcrow"></a></p>
<p id="section-3.10.5-12.1.2">
&lt;SEQ=SND.NXT&gt;&lt;CTL=RST&gt;<a href="#section-3.10.5-12.1.2" class="pilcrow"></a></p>
</li>
<li class="normal" id="section-3.10.5-12.2">
All queued SENDs and RECEIVEs should be given "connection reset"
notification; all segments queued for transmission (except for the
RST formed above) or retransmission should be flushed. Delete the
TCB, enter CLOSED state, and return.<a href="#section-3.10.5-12.2" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.5-13">
CLOSING STATE<a href="#section-3.10.5-13" class="pilcrow"></a></p>
<p id="section-3.10.5-14">
LAST-ACK STATE<a href="#section-3.10.5-14" class="pilcrow"></a></p>
<p id="section-3.10.5-15">
TIME-WAIT STATE<a href="#section-3.10.5-15" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.5-16.1">
Respond with "ok" and delete the TCB, enter CLOSED state, and
return.<a href="#section-3.10.5-16.1" class="pilcrow"></a>
</li>
</ul>
</section>
<section id="section-3.10.6">
<h4 id="name-status-call">
<a href="#section-3.10.6" class="section-number selfRef">3.10.6. </a><a href="#name-status-call" class="section-name selfRef">STATUS Call</a>
</h4>
<p id="section-3.10.6-1">
CLOSED STATE (i.e., TCB does not exist)<a href="#section-3.10.6-1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.6-2.1">
If the user should not have access to such a connection, return
"error: connection illegal for this process".<a href="#section-3.10.6-2.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.6-2.2">
Otherwise, return "error: connection does not exist".<a href="#section-3.10.6-2.2" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.6-3">
LISTEN STATE<a href="#section-3.10.6-3" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.6-4.1">
Return "state = LISTEN" and the TCB pointer.<a href="#section-3.10.6-4.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.6-5">
SYN-SENT STATE<a href="#section-3.10.6-5" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.6-6.1">
Return "state = SYN-SENT" and the TCB pointer.<a href="#section-3.10.6-6.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.6-7">
SYN-RECEIVED STATE<a href="#section-3.10.6-7" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.6-8.1">
Return "state = SYN-RECEIVED" and the TCB pointer.<a href="#section-3.10.6-8.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.6-9">
ESTABLISHED STATE<a href="#section-3.10.6-9" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.6-10.1">
Return "state = ESTABLISHED" and the TCB pointer.<a href="#section-3.10.6-10.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.6-11">
FIN-WAIT-1 STATE<a href="#section-3.10.6-11" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.6-12.1">
Return "state = FIN-WAIT-1" and the TCB pointer.<a href="#section-3.10.6-12.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.6-13">
FIN-WAIT-2 STATE<a href="#section-3.10.6-13" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.6-14.1">
Return "state = FIN-WAIT-2" and the TCB pointer.<a href="#section-3.10.6-14.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.6-15">
CLOSE-WAIT STATE<a href="#section-3.10.6-15" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.6-16.1">
Return "state = CLOSE-WAIT" and the TCB pointer.<a href="#section-3.10.6-16.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.6-17">
CLOSING STATE<a href="#section-3.10.6-17" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.6-18.1">
Return "state = CLOSING" and the TCB pointer.<a href="#section-3.10.6-18.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.6-19">
LAST-ACK STATE<a href="#section-3.10.6-19" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.6-20.1">
Return "state = LAST-ACK" and the TCB pointer.<a href="#section-3.10.6-20.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.6-21">
TIME-WAIT STATE<a href="#section-3.10.6-21" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.6-22.1">
Return "state = TIME-WAIT" and the TCB pointer.<a href="#section-3.10.6-22.1" class="pilcrow"></a>
</li>
</ul>
</section>
<section id="section-3.10.7">
<h4 id="name-segment-arrives">
<a href="#section-3.10.7" class="section-number selfRef">3.10.7. </a><a href="#name-segment-arrives" class="section-name selfRef">SEGMENT ARRIVES</a>
</h4>
<section id="section-3.10.7.1">
<h5 id="name-closed-state">
<a href="#section-3.10.7.1" class="section-number selfRef">3.10.7.1. </a><a href="#name-closed-state" class="section-name selfRef">CLOSED STATE</a>
</h5>
<p id="section-3.10.7.1-1">
If the state is CLOSED (i.e., TCB does not exist), then<a href="#section-3.10.7.1-1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10.7.1-2.1">
all data in the incoming segment is discarded. An incoming
segment containing a RST is discarded. An incoming segment not
containing a RST causes a RST to be sent in response. The
acknowledgment and sequence field values are selected to make the
reset sequence acceptable to the TCP endpoint that sent the offending
segment.<a href="#section-3.10.7.1-2.1" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.10.7.1-2.2">
<p id="section-3.10.7.1-2.2.1">
If the ACK bit is off, sequence number zero is used,<a href="#section-3.10.7.1-2.2.1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10.7.1-2.2.2.1">
&lt;SEQ=0&gt;&lt;ACK=SEG.SEQ+SEG.LEN&gt;&lt;CTL=RST,ACK&gt;<a href="#section-3.10.7.1-2.2.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal ulEmpty" id="section-3.10.7.1-2.3">
<p id="section-3.10.7.1-2.3.1">
If the ACK bit is on,<a href="#section-3.10.7.1-2.3.1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10.7.1-2.3.2.1">
&lt;SEQ=SEG.ACK&gt;&lt;CTL=RST&gt;<a href="#section-3.10.7.1-2.3.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal ulEmpty" id="section-3.10.7.1-2.4">
Return.<a href="#section-3.10.7.1-2.4" class="pilcrow"></a>
</li>
</ul>
</section>
<section id="section-3.10.7.2">
<h5 id="name-listen-state">
<a href="#section-3.10.7.2" class="section-number selfRef">3.10.7.2. </a><a href="#name-listen-state" class="section-name selfRef">LISTEN STATE</a>
</h5>
<p id="section-3.10.7.2-1">
If the state is LISTEN, then<a href="#section-3.10.7.2-1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10.7.2-2.1">
<p id="section-3.10.7.2-2.1.1">
First, check for a RST:<a href="#section-3.10.7.2-2.1.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.2-2.1.2.1">
An incoming RST segment could not be valid since
it could not have been sent in response to anything sent by this
incarnation of the connection.
An incoming RST should be ignored. Return.<a href="#section-3.10.7.2-2.1.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal ulEmpty" id="section-3.10.7.2-2.2">
<p id="section-3.10.7.2-2.2.1">
Second, check for an ACK:<a href="#section-3.10.7.2-2.2.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.2-2.2.2.1">
<p id="section-3.10.7.2-2.2.2.1.1">
Any acknowledgment is bad if it arrives on a connection still in
the LISTEN state. An acceptable reset segment should be formed
for any arriving ACK-bearing segment. The RST should be
formatted as follows:<a href="#section-3.10.7.2-2.2.2.1.1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10.7.2-2.2.2.1.2.1">
&lt;SEQ=SEG.ACK&gt;&lt;CTL=RST&gt;<a href="#section-3.10.7.2-2.2.2.1.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.2-2.2.2.2">
Return.<a href="#section-3.10.7.2-2.2.2.2" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal ulEmpty" id="section-3.10.7.2-2.3">
<p id="section-3.10.7.2-2.3.1">
Third, check for a SYN:<a href="#section-3.10.7.2-2.3.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.2-2.3.2.1">
<p id="section-3.10.7.2-2.3.2.1.1">
If the SYN bit is set, check the security. If the
security/compartment on the incoming segment does not exactly
match the security/compartment in the TCB, then send a reset and
return.<a href="#section-3.10.7.2-2.3.2.1.1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10.7.2-2.3.2.1.2.1">
&lt;SEQ=0&gt;&lt;ACK=SEG.SEQ+SEG.LEN&gt;&lt;CTL=RST,ACK&gt;<a href="#section-3.10.7.2-2.3.2.1.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.2-2.3.2.2">
<p id="section-3.10.7.2-2.3.2.2.1">
Set RCV.NXT to SEG.SEQ+1, IRS is set to SEG.SEQ, and any other
control or text should be queued for processing later. ISS
should be selected and a SYN segment sent of the form:<a href="#section-3.10.7.2-2.3.2.2.1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10.7.2-2.3.2.2.2.1">
&lt;SEQ=ISS&gt;&lt;ACK=RCV.NXT&gt;&lt;CTL=SYN,ACK&gt;<a href="#section-3.10.7.2-2.3.2.2.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.2-2.3.2.3">
SND.NXT is set to ISS+1 and SND.UNA to ISS. The connection
state should be changed to SYN-RECEIVED. Note that any other
incoming control or data (combined with SYN) will be processed
in the SYN-RECEIVED state, but processing of SYN and ACK should
not be repeated. If the listen was not fully specified (i.e.,
the remote socket was not fully specified), then the
unspecified fields should be filled in now.<a href="#section-3.10.7.2-2.3.2.3" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal ulEmpty" id="section-3.10.7.2-2.4">
<p id="section-3.10.7.2-2.4.1">
Fourth, other data or control:<a href="#section-3.10.7.2-2.4.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.2-2.4.2.1">
This should not be reached. Drop the segment and return. Any other control or data-bearing segment (not containing SYN)
must have an ACK and thus would have been discarded by the ACK
processing in the second step, unless it was first discarded by
RST checking in the first step.<a href="#section-3.10.7.2-2.4.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
</ul>
</section>
<section id="section-3.10.7.3">
<h5 id="name-syn-sent-state">
<a href="#section-3.10.7.3" class="section-number selfRef">3.10.7.3. </a><a href="#name-syn-sent-state" class="section-name selfRef">SYN-SENT STATE</a>
</h5>
<p id="section-3.10.7.3-1">
If the state is SYN-SENT, then<a href="#section-3.10.7.3-1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10.7.3-2.1">
<p id="section-3.10.7.3-2.1.1">
First, check the ACK bit:<a href="#section-3.10.7.3-2.1.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.3-2.1.2.1">
<p id="section-3.10.7.3-2.1.2.1.1">
If the ACK bit is set,<a href="#section-3.10.7.3-2.1.2.1.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.3-2.1.2.1.2.1">
<p id="section-3.10.7.3-2.1.2.1.2.1.1">
If SEG.ACK =&lt; ISS or SEG.ACK &gt; SND.NXT, send a reset (unless
the RST bit is set, if so drop the segment and return)<a href="#section-3.10.7.3-2.1.2.1.2.1.1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10.7.3-2.1.2.1.2.1.2.1">
&lt;SEQ=SEG.ACK&gt;&lt;CTL=RST&gt;<a href="#section-3.10.7.3-2.1.2.1.2.1.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.3-2.1.2.1.2.2">
and discard the segment. Return.<a href="#section-3.10.7.3-2.1.2.1.2.2" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.3-2.1.2.1.2.3">
If SND.UNA &lt; SEG.ACK =&lt; SND.NXT, then the ACK is acceptable. Some deployed TCP code has used the check SEG.ACK == SND.NXT (using "==" rather than "=&lt;"), but this is not appropriate when the stack is capable of sending data on the SYN because the TCP peer may not accept and acknowledge all of the data on the SYN.<a href="#section-3.10.7.3-2.1.2.1.2.3" class="pilcrow"></a>
</li>
</ul>
</li>
</ul>
</li>
<li class="normal ulEmpty" id="section-3.10.7.3-2.2">
<p id="section-3.10.7.3-2.2.1">
Second, check the RST bit:<a href="#section-3.10.7.3-2.2.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.3-2.2.2.1">
<p id="section-3.10.7.3-2.2.2.1.1">
If the RST bit is set,<a href="#section-3.10.7.3-2.2.2.1.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.3-2.2.2.1.2.1">
A potential blind reset attack is described in RFC 5961 <span>[<a href="#RFC5961" class="xref">9</a>]</span>. The mitigation described in that document has specific applicability explained therein, and is not a substitute for cryptographic protection (e.g., IPsec or TCP-AO). A TCP implementation that supports the mitigation described in RFC 5961 <span class="bcp14">SHOULD</span> first check that the sequence number exactly matches RCV.NXT prior to executing the action in the next paragraph.<a href="#section-3.10.7.3-2.2.2.1.2.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.3-2.2.2.1.2.2">
If the ACK was acceptable, then signal to the user "error:
connection reset", drop the segment, enter CLOSED state,
delete TCB, and return. Otherwise (no ACK), drop the segment
and return.<a href="#section-3.10.7.3-2.2.2.1.2.2" class="pilcrow"></a>
</li>
</ul>
</li>
</ul>
</li>
<li class="normal ulEmpty" id="section-3.10.7.3-2.3">
<p id="section-3.10.7.3-2.3.1">
Third, check the security:<a href="#section-3.10.7.3-2.3.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.3-2.3.2.1">
<p id="section-3.10.7.3-2.3.2.1.1">
If the security/compartment in the segment does not exactly
match the security/compartment in the TCB, send a reset:<a href="#section-3.10.7.3-2.3.2.1.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.3-2.3.2.1.2.1">
<p id="section-3.10.7.3-2.3.2.1.2.1.1">
If there is an ACK,<a href="#section-3.10.7.3-2.3.2.1.2.1.1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10.7.3-2.3.2.1.2.1.2.1">
&lt;SEQ=SEG.ACK&gt;&lt;CTL=RST&gt;<a href="#section-3.10.7.3-2.3.2.1.2.1.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.3-2.3.2.1.2.2">
<p id="section-3.10.7.3-2.3.2.1.2.2.1">
Otherwise,<a href="#section-3.10.7.3-2.3.2.1.2.2.1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10.7.3-2.3.2.1.2.2.2.1">
&lt;SEQ=0&gt;&lt;ACK=SEG.SEQ+SEG.LEN&gt;&lt;CTL=RST,ACK&gt;<a href="#section-3.10.7.3-2.3.2.1.2.2.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.3-2.3.2.2">
If a reset was sent, discard the segment and return.<a href="#section-3.10.7.3-2.3.2.2" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal ulEmpty" id="section-3.10.7.3-2.4">
<p id="section-3.10.7.3-2.4.1">
Fourth, check the SYN bit:<a href="#section-3.10.7.3-2.4.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.3-2.4.2.1">
This step should be reached only if the ACK is ok, or there is
no ACK, and the segment did not contain a RST.<a href="#section-3.10.7.3-2.4.2.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.3-2.4.2.2">
If the SYN bit is on and the security/compartment
is acceptable, then RCV.NXT is set to SEG.SEQ+1, IRS is set to
SEG.SEQ. SND.UNA should be advanced to equal SEG.ACK (if there
is an ACK), and any segments on the retransmission queue that
are thereby acknowledged should be removed.<a href="#section-3.10.7.3-2.4.2.2" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.3-2.4.2.3">
<p id="section-3.10.7.3-2.4.2.3.1">
If SND.UNA &gt; ISS (our SYN has been ACKed), change the connection
state to ESTABLISHED, form an ACK segment<a href="#section-3.10.7.3-2.4.2.3.1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10.7.3-2.4.2.3.2.1">
&lt;SEQ=SND.NXT&gt;&lt;ACK=RCV.NXT&gt;&lt;CTL=ACK&gt;<a href="#section-3.10.7.3-2.4.2.3.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.3-2.4.2.4">
and send it. Data or controls that were queued for
transmission <span class="bcp14">MAY</span> be included. Some TCP implementations suppress
sending this segment when the received segment contains data that will
anyways generate an acknowledgment in the later processing steps,
saving this extra acknowledgment of the SYN from being sent. If there
are other controls or text in the segment, then continue processing at
the <a href="#check-urg-bit" class="xref">sixth step</a> under <a href="#other-states" class="xref">Section 3.10.7.4</a> where the URG
bit is checked; otherwise, return.<a href="#section-3.10.7.3-2.4.2.4" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.3-2.4.2.5">
<p id="section-3.10.7.3-2.4.2.5.1">
Otherwise, enter SYN-RECEIVED, form a SYN,ACK segment<a href="#section-3.10.7.3-2.4.2.5.1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10.7.3-2.4.2.5.2.1">
&lt;SEQ=ISS&gt;&lt;ACK=RCV.NXT&gt;&lt;CTL=SYN,ACK&gt;<a href="#section-3.10.7.3-2.4.2.5.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.3-2.4.2.6">
<p id="section-3.10.7.3-2.4.2.6.1">
and send it. Set the variables:<a href="#section-3.10.7.3-2.4.2.6.1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10.7.3-2.4.2.6.2.1">
<p id="section-3.10.7.3-2.4.2.6.2.1.1">SND.WND &lt;- SEG.WND<a href="#section-3.10.7.3-2.4.2.6.2.1.1" class="pilcrow"></a></p>
<p id="section-3.10.7.3-2.4.2.6.2.1.2">
SND.WL1 &lt;- SEG.SEQ<a href="#section-3.10.7.3-2.4.2.6.2.1.2" class="pilcrow"></a></p>
<p id="section-3.10.7.3-2.4.2.6.2.1.3">
SND.WL2 &lt;- SEG.ACK<a href="#section-3.10.7.3-2.4.2.6.2.1.3" class="pilcrow"></a></p>
</li>
</ul>
<p id="section-3.10.7.3-2.4.2.6.3">
If there are other controls or text in the
segment, queue them for processing after the ESTABLISHED state
has been reached, return.<a href="#section-3.10.7.3-2.4.2.6.3" class="pilcrow"></a></p>
</li>
<li class="normal" id="section-3.10.7.3-2.4.2.7">
Note that it is legal to send and receive application data on SYN segments (this is the "text in the segment" mentioned above). There has been significant misinformation and misunderstanding of this topic historically. Some firewalls and security devices consider this suspicious. However, the capability was used in T/TCP <span>[<a href="#RFC1644" class="xref">21</a>]</span> and is used in TCP Fast Open (TFO) <span>[<a href="#RFC7413" class="xref">48</a>]</span>, so is important for implementations and network devices to permit.<a href="#section-3.10.7.3-2.4.2.7" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal ulEmpty" id="section-3.10.7.3-2.5">
Fifth, if neither of the SYN or RST bits is set, then drop the
segment and return.<a href="#section-3.10.7.3-2.5" class="pilcrow"></a>
</li>
</ul>
</section>
<div id="other-states">
<section id="section-3.10.7.4">
<h5 id="name-other-states">
<a href="#section-3.10.7.4" class="section-number selfRef">3.10.7.4. </a><a href="#name-other-states" class="section-name selfRef">Other States</a>
</h5>
<p id="section-3.10.7.4-1">
Otherwise,<a href="#section-3.10.7.4-1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10.7.4-2.1">
<p id="section-3.10.7.4-2.1.1">
First, check sequence number:<a href="#section-3.10.7.4-2.1.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.1.2.1">
SYN-RECEIVED STATE<a href="#section-3.10.7.4-2.1.2.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.1.2.2">
ESTABLISHED STATE<a href="#section-3.10.7.4-2.1.2.2" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.1.2.3">
FIN-WAIT-1 STATE<a href="#section-3.10.7.4-2.1.2.3" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.1.2.4">
FIN-WAIT-2 STATE<a href="#section-3.10.7.4-2.1.2.4" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.1.2.5">
CLOSE-WAIT STATE<a href="#section-3.10.7.4-2.1.2.5" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.1.2.6">
CLOSING STATE<a href="#section-3.10.7.4-2.1.2.6" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.1.2.7">
LAST-ACK STATE<a href="#section-3.10.7.4-2.1.2.7" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.1.2.8">
<p id="section-3.10.7.4-2.1.2.8.1">
TIME-WAIT STATE<a href="#section-3.10.7.4-2.1.2.8.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.1.2.8.2.1">
Segments are processed in sequence. Initial tests on arrival
are used to discard old duplicates, but further processing is
done in SEG.SEQ order. If a segment's contents straddle the
boundary between old and new, only the new parts are
processed.<a href="#section-3.10.7.4-2.1.2.8.2.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.1.2.8.2.2">
In general, the processing of received segments <span class="bcp14">MUST</span> be
implemented to aggregate ACK segments whenever possible (MUST-58).
For example, if the TCP endpoint is processing a series of queued
segments, it <span class="bcp14">MUST</span> process them all before sending any ACK
segments (MUST-59).<a href="#section-3.10.7.4-2.1.2.8.2.2" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.1.2.8.2.3">
<p id="section-3.10.7.4-2.1.2.8.2.3.1">
There are four cases for the acceptability test for an incoming
segment:<a href="#section-3.10.7.4-2.1.2.8.2.3.1" class="pilcrow"></a></p>
<span id="name-segment-acceptability-tests-2"></span><table class="center" id="table-6">
<caption>
<a href="#table-6" class="selfRef">Table 6</a>:
<a href="#name-segment-acceptability-tests-2" class="selfRef">Segment Acceptability Tests</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Segment Length</th>
<th class="text-left" rowspan="1" colspan="1">Receive Window</th>
<th class="text-left" rowspan="1" colspan="1">Test</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">SEG.SEQ = RCV.NXT</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">&gt;0</td>
<td class="text-left" rowspan="1" colspan="1">RCV.NXT =&lt; SEG.SEQ &lt; RCV.NXT+RCV.WND</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">&gt;0</td>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">not acceptable</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">&gt;0</td>
<td class="text-left" rowspan="1" colspan="1">&gt;0</td>
<td class="text-left" rowspan="1" colspan="1">
<p id="section-3.10.7.4-2.1.2.8.2.3.2.2.4.3.1">RCV.NXT =&lt; SEG.SEQ &lt; RCV.NXT+RCV.WND<a href="#section-3.10.7.4-2.1.2.8.2.3.2.2.4.3.1" class="pilcrow"></a></p>
<p id="section-3.10.7.4-2.1.2.8.2.3.2.2.4.3.2">or<a href="#section-3.10.7.4-2.1.2.8.2.3.2.2.4.3.2" class="pilcrow"></a></p>
<p id="section-3.10.7.4-2.1.2.8.2.3.2.2.4.3.3">RCV.NXT =&lt; SEG.SEQ+SEG.LEN-1 &lt; RCV.NXT+RCV.WND<a href="#section-3.10.7.4-2.1.2.8.2.3.2.2.4.3.3" class="pilcrow"></a></p>
</td>
</tr>
</tbody>
</table>
</li>
<li class="normal" id="section-3.10.7.4-2.1.2.8.2.4">
In implementing sequence number validation as described here, please note <a href="#seqval" class="xref">Appendix A.2</a>.<a href="#section-3.10.7.4-2.1.2.8.2.4" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.1.2.8.2.5">
If the RCV.WND is zero, no segments will be acceptable, but
special allowance should be made to accept valid ACKs, URGs, and
RSTs.<a href="#section-3.10.7.4-2.1.2.8.2.5" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.1.2.8.2.6">
<p id="section-3.10.7.4-2.1.2.8.2.6.1">
If an incoming segment is not acceptable, an acknowledgment
should be sent in reply (unless the RST bit is set, if so drop
the segment and return):<a href="#section-3.10.7.4-2.1.2.8.2.6.1" class="pilcrow"></a></p>
<p id="section-3.10.7.4-2.1.2.8.2.6.2">
&lt;SEQ=SND.NXT&gt;&lt;ACK=RCV.NXT&gt;&lt;CTL=ACK&gt;<a href="#section-3.10.7.4-2.1.2.8.2.6.2" class="pilcrow"></a></p>
</li>
<li class="normal" id="section-3.10.7.4-2.1.2.8.2.7">
After sending the acknowledgment, drop the unacceptable segment
and return.<a href="#section-3.10.7.4-2.1.2.8.2.7" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.1.2.8.2.8">
Note that for the TIME-WAIT state, there is an improved algorithm
described in <span>[<a href="#RFC6191" class="xref">40</a>]</span> for handling incoming SYN
segments that utilizes timestamps rather than relying on
the sequence number check described here. When the improved
algorithm is implemented, the logic above is not applicable for
incoming SYN segments with Timestamp Options, received on a
connection in the TIME-WAIT state.<a href="#section-3.10.7.4-2.1.2.8.2.8" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.1.2.8.2.9">
In the following it is assumed that the segment is the idealized
segment that begins at RCV.NXT and does not exceed the window.
One could tailor actual segments to fit this assumption by
trimming off any portions that lie outside the window (including
SYN and FIN) and only processing further if the segment then
begins at RCV.NXT. Segments with higher beginning sequence
numbers <span class="bcp14">SHOULD</span> be held for later processing (SHLD-31).<a href="#section-3.10.7.4-2.1.2.8.2.9" class="pilcrow"></a>
</li>
</ul>
</li>
</ul>
</li>
<li class="normal ulEmpty" id="section-3.10.7.4-2.2">
<p id="section-3.10.7.4-2.2.1">
Second, check the RST bit:<a href="#section-3.10.7.4-2.2.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.2.2.1">
<p id="section-3.10.7.4-2.2.2.1.1">
RFC 5961 <span>[<a href="#RFC5961" class="xref">9</a>]</span>, Section <a href="https://www.rfc-editor.org/rfc/rfc5961#section-3" class="relref">3</a> describes a potential blind reset attack and optional mitigation approach. This does not provide a cryptographic protection (e.g., as in IPsec or TCP-AO) but can be applicable in situations described in RFC 5961. For stacks implementing the protection described in RFC 5961, the three checks below apply; otherwise, processing for these states is indicated further below.<a href="#section-3.10.7.4-2.2.2.1.1" class="pilcrow"></a></p>
<span class="break"></span><dl class="olPercent" id="section-3.10.7.4-2.2.2.1.2">
<dt>1)</dt>
<dd id="section-3.10.7.4-2.2.2.1.2.1">If the RST bit is set and the sequence number is outside the current receive window, silently drop the segment.<a href="#section-3.10.7.4-2.2.2.1.2.1" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt>2)</dt>
<dd id="section-3.10.7.4-2.2.2.1.2.2">If the RST bit is set and the sequence number exactly matches the next expected sequence number (RCV.NXT), then TCP endpoints <span class="bcp14">MUST</span> reset the connection in the manner prescribed below according to the connection state.<a href="#section-3.10.7.4-2.2.2.1.2.2" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt>3)</dt>
<dd id="section-3.10.7.4-2.2.2.1.2.3">
<p id="section-3.10.7.4-2.2.2.1.2.3.1">If the RST bit is set and the sequence number does not exactly match the next expected sequence value, yet is within the current receive window, TCP endpoints <span class="bcp14">MUST</span> send an acknowledgment (challenge ACK):<a href="#section-3.10.7.4-2.2.2.1.2.3.1" class="pilcrow"></a></p>
<p id="section-3.10.7.4-2.2.2.1.2.3.2">
&lt;SEQ=SND.NXT&gt;&lt;ACK=RCV.NXT&gt;&lt;CTL=ACK&gt;<a href="#section-3.10.7.4-2.2.2.1.2.3.2" class="pilcrow"></a></p>
<p id="section-3.10.7.4-2.2.2.1.2.3.3">
After sending the challenge ACK, TCP endpoints <span class="bcp14">MUST</span> drop the unacceptable segment and stop processing the incoming packet further. Note that RFC 5961 and Errata ID 4772 <span>[<a href="#Err4772" class="xref">99</a>]</span> contain additional considerations for ACK throttling in an implementation.<a href="#section-3.10.7.4-2.2.2.1.2.3.3" class="pilcrow"></a></p>
</dd>
<dd class="break"></dd>
</dl>
</li>
<li class="normal" id="section-3.10.7.4-2.2.2.2">
<p id="section-3.10.7.4-2.2.2.2.1">
SYN-RECEIVED STATE<a href="#section-3.10.7.4-2.2.2.2.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.2.2.2.2.1">
<p id="section-3.10.7.4-2.2.2.2.2.1.1">
If the RST bit is set,<a href="#section-3.10.7.4-2.2.2.2.2.1.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.2.2.2.2.1.2.1">
If this connection was initiated with a passive OPEN (i.e.,
came from the LISTEN state), then return this connection to
LISTEN state and return. The user need not be informed. If
this connection was initiated with an active OPEN (i.e., came
from SYN-SENT state), then the connection was refused; signal
the user "connection refused". In either case,
the retransmission queue should be flushed. And in the
active OPEN case, enter the CLOSED state and delete the TCB,
and return.<a href="#section-3.10.7.4-2.2.2.2.2.1.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.2.2.3">
ESTABLISHED STATE<a href="#section-3.10.7.4-2.2.2.3" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.2.2.4">
FIN-WAIT-1 STATE<a href="#section-3.10.7.4-2.2.2.4" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.2.2.5">
FIN-WAIT-2 STATE<a href="#section-3.10.7.4-2.2.2.5" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.2.2.6">
<p id="section-3.10.7.4-2.2.2.6.1">
CLOSE-WAIT STATE<a href="#section-3.10.7.4-2.2.2.6.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.2.2.6.2.1">
If the RST bit is set, then any outstanding RECEIVEs and SEND
should receive "reset" responses. All segment queues should be
flushed. Users should also receive an unsolicited general
"connection reset" signal. Enter the CLOSED state, delete the
TCB, and return.<a href="#section-3.10.7.4-2.2.2.6.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.2.2.7">
CLOSING STATE<a href="#section-3.10.7.4-2.2.2.7" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.2.2.8">
LAST-ACK STATE<a href="#section-3.10.7.4-2.2.2.8" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.2.2.9">
<p id="section-3.10.7.4-2.2.2.9.1">
TIME-WAIT STATE<a href="#section-3.10.7.4-2.2.2.9.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.2.2.9.2.1">
If the RST bit is set, then enter the CLOSED state, delete the
TCB, and return.<a href="#section-3.10.7.4-2.2.2.9.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
</ul>
</li>
<li class="normal ulEmpty" id="section-3.10.7.4-2.3">
<p id="section-3.10.7.4-2.3.1">
Third, check security:<a href="#section-3.10.7.4-2.3.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.3.2.1">
<p id="section-3.10.7.4-2.3.2.1.1">
SYN-RECEIVED STATE<a href="#section-3.10.7.4-2.3.2.1.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.3.2.1.2.1">
If the security/compartment in the segment does not
exactly match the security/compartment in the TCB,
then send a reset and return.<a href="#section-3.10.7.4-2.3.2.1.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.3.2.2">
ESTABLISHED STATE<a href="#section-3.10.7.4-2.3.2.2" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.3.2.3">
FIN-WAIT-1 STATE<a href="#section-3.10.7.4-2.3.2.3" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.3.2.4">
FIN-WAIT-2 STATE<a href="#section-3.10.7.4-2.3.2.4" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.3.2.5">
CLOSE-WAIT STATE<a href="#section-3.10.7.4-2.3.2.5" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.3.2.6">
CLOSING STATE<a href="#section-3.10.7.4-2.3.2.6" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.3.2.7">
LAST-ACK STATE<a href="#section-3.10.7.4-2.3.2.7" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.3.2.8">
<p id="section-3.10.7.4-2.3.2.8.1">
TIME-WAIT STATE<a href="#section-3.10.7.4-2.3.2.8.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.3.2.8.2.1">
If the security/compartment in the segment does not
exactly match the security/compartment in the TCB,
then send a reset; any outstanding RECEIVEs and SEND should
receive "reset" responses. All segment queues should be
flushed. Users should also receive an unsolicited general
"connection reset" signal. Enter the CLOSED state, delete the
TCB, and return.<a href="#section-3.10.7.4-2.3.2.8.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.3.2.9">
Note this check is placed following the sequence check to prevent
a segment from an old connection between these port numbers with a
different security from causing an abort of the
current connection.<a href="#section-3.10.7.4-2.3.2.9" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal ulEmpty" id="section-3.10.7.4-2.4">
<p id="section-3.10.7.4-2.4.1">
Fourth, check the SYN bit:<a href="#section-3.10.7.4-2.4.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.4.2.1">
<p id="section-3.10.7.4-2.4.2.1.1">
SYN-RECEIVED STATE<a href="#section-3.10.7.4-2.4.2.1.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.4.2.1.2.1">If the connection was initiated with a passive OPEN, then return this connection to the LISTEN state and return. Otherwise, handle per the directions for synchronized states below.<a href="#section-3.10.7.4-2.4.2.1.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.4.2.2">
ESTABLISHED STATE<a href="#section-3.10.7.4-2.4.2.2" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.4.2.3">
FIN-WAIT-1 STATE<a href="#section-3.10.7.4-2.4.2.3" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.4.2.4">
FIN-WAIT-2 STATE<a href="#section-3.10.7.4-2.4.2.4" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.4.2.5">
CLOSE-WAIT STATE<a href="#section-3.10.7.4-2.4.2.5" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.4.2.6">
CLOSING STATE<a href="#section-3.10.7.4-2.4.2.6" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.4.2.7">
LAST-ACK STATE<a href="#section-3.10.7.4-2.4.2.7" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.4.2.8">
<p id="section-3.10.7.4-2.4.2.8.1">
TIME-WAIT STATE<a href="#section-3.10.7.4-2.4.2.8.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.4.2.8.2.1">
<p id="section-3.10.7.4-2.4.2.8.2.1.1">
If the SYN bit is set in these synchronized states, it may be either a legitimate new connection attempt (e.g., in the case of TIME-WAIT), an error where the connection should be reset, or the result of an attack attempt, as described in RFC 5961 <span>[<a href="#RFC5961" class="xref">9</a>]</span>. For the TIME-WAIT state, new connections can be accepted if the Timestamp Option is used and meets expectations (per <span>[<a href="#RFC6191" class="xref">40</a>]</span>). For all other cases, RFC 5961 provides a mitigation with applicability to some situations, though there are also alternatives that offer cryptographic protection (see <a href="#Security" class="xref">Section 7</a>). RFC 5961 recommends that in these synchronized states, if the SYN bit is set, irrespective of the sequence number, TCP endpoints <span class="bcp14">MUST</span> send a "challenge ACK" to the remote peer:<a href="#section-3.10.7.4-2.4.2.8.2.1.1" class="pilcrow"></a></p>
<p id="section-3.10.7.4-2.4.2.8.2.1.2">
&lt;SEQ=SND.NXT&gt;&lt;ACK=RCV.NXT&gt;&lt;CTL=ACK&gt;<a href="#section-3.10.7.4-2.4.2.8.2.1.2" class="pilcrow"></a></p>
</li>
<li class="normal" id="section-3.10.7.4-2.4.2.8.2.2">
After sending the acknowledgment, TCP implementations <span class="bcp14">MUST</span> drop the unacceptable segment and stop processing further. Note that RFC 5961 and Errata ID 4772 <span>[<a href="#Err4772" class="xref">99</a>]</span> contain additional ACK throttling notes for an implementation.<a href="#section-3.10.7.4-2.4.2.8.2.2" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.4.2.8.2.3">
For implementations that do not follow RFC 5961, the original behavior described in RFC 793 follows in this paragraph. If the SYN is in the window it is an error: send a reset, any
outstanding RECEIVEs and SEND should receive "reset" responses,
all segment queues should be flushed, the user should also
receive an unsolicited general "connection reset" signal, enter
the CLOSED state, delete the TCB, and return.<a href="#section-3.10.7.4-2.4.2.8.2.3" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.4.2.8.2.4">
If the SYN is not in the window, this step would not be reached
and an ACK would have been sent in the first step (sequence
number check).<a href="#section-3.10.7.4-2.4.2.8.2.4" class="pilcrow"></a>
</li>
</ul>
</li>
</ul>
</li>
<li class="normal ulEmpty" id="section-3.10.7.4-2.5">
<p id="section-3.10.7.4-2.5.1">
Fifth, check the ACK field:<a href="#section-3.10.7.4-2.5.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.5.2.1">
if the ACK bit is off, drop the segment and return<a href="#section-3.10.7.4-2.5.2.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.5.2.2">
<p id="section-3.10.7.4-2.5.2.2.1">
if the ACK bit is on,<a href="#section-3.10.7.4-2.5.2.2.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.1">
RFC 5961 <span>[<a href="#RFC5961" class="xref">9</a>], <a href="https://www.rfc-editor.org/rfc/rfc5961#section-5" class="relref">Section 5</a></span> describes a potential blind data injection attack, and mitigation that implementations <span class="bcp14">MAY</span> choose to include (MAY-12). TCP stacks that implement RFC 5961 <span class="bcp14">MUST</span> add an input check that the ACK value is acceptable only if it is in the range of ((SND.UNA - MAX.SND.WND) =&lt; SEG.ACK =&lt; SND.NXT). All incoming segments whose ACK value doesn't satisfy the above condition <span class="bcp14">MUST</span> be discarded and an ACK sent back. The new state variable MAX.SND.WND is defined as the largest window that the local sender has ever received from its peer (subject to window scaling) or may be hard-coded to a maximum permissible window value. When the ACK value is acceptable, the per-state processing below applies:<a href="#section-3.10.7.4-2.5.2.2.2.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.2">
<p id="section-3.10.7.4-2.5.2.2.2.2.1">
SYN-RECEIVED STATE<a href="#section-3.10.7.4-2.5.2.2.2.2.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.2.2.1">
<p id="section-3.10.7.4-2.5.2.2.2.2.2.1.1">
If SND.UNA &lt; SEG.ACK =&lt; SND.NXT, then enter ESTABLISHED state
and continue processing with the variables below set to:<a href="#section-3.10.7.4-2.5.2.2.2.2.2.1.1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10.7.4-2.5.2.2.2.2.2.1.2.1">
SND.WND &lt;- SEG.WND<a href="#section-3.10.7.4-2.5.2.2.2.2.2.1.2.1" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.10.7.4-2.5.2.2.2.2.2.1.2.2">
SND.WL1 &lt;- SEG.SEQ<a href="#section-3.10.7.4-2.5.2.2.2.2.2.1.2.2" class="pilcrow"></a>
</li>
<li class="normal ulEmpty" id="section-3.10.7.4-2.5.2.2.2.2.2.1.2.3">
SND.WL2 &lt;- SEG.ACK<a href="#section-3.10.7.4-2.5.2.2.2.2.2.1.2.3" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.2.2.2">
<p id="section-3.10.7.4-2.5.2.2.2.2.2.2.1">
If the segment acknowledgment is not acceptable, form a
reset segment<a href="#section-3.10.7.4-2.5.2.2.2.2.2.2.1" class="pilcrow"></a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3.10.7.4-2.5.2.2.2.2.2.2.2.1">
&lt;SEQ=SEG.ACK&gt;&lt;CTL=RST&gt;<a href="#section-3.10.7.4-2.5.2.2.2.2.2.2.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.2.2.3">
and send it.<a href="#section-3.10.7.4-2.5.2.2.2.2.2.3" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.3">
<p id="section-3.10.7.4-2.5.2.2.2.3.1">
ESTABLISHED STATE<a href="#section-3.10.7.4-2.5.2.2.2.3.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.3.2.1">
If SND.UNA &lt; SEG.ACK =&lt; SND.NXT, then set SND.UNA &lt;- SEG.ACK.
Any segments on the retransmission queue that are thereby
entirely acknowledged are removed. Users should receive
positive acknowledgments for buffers that have been SENT and
fully acknowledged (i.e., SEND buffer should be returned with
"ok" response). If the ACK is a duplicate
(SEG.ACK =&lt; SND.UNA), it can be ignored. If the ACK acks
something not yet sent (SEG.ACK &gt; SND.NXT), then send an ACK,
drop the segment, and return.<a href="#section-3.10.7.4-2.5.2.2.2.3.2.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.3.2.2">
If SND.UNA =&lt; SEG.ACK =&lt; SND.NXT, the send window should be
updated. If (SND.WL1 &lt; SEG.SEQ or (SND.WL1 = SEG.SEQ and
SND.WL2 =&lt; SEG.ACK)), set SND.WND &lt;- SEG.WND, set
SND.WL1 &lt;- SEG.SEQ, and set SND.WL2 &lt;- SEG.ACK.<a href="#section-3.10.7.4-2.5.2.2.2.3.2.2" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.3.2.3">
Note that SND.WND is an offset from SND.UNA, that SND.WL1
records the sequence number of the last segment used to update
SND.WND, and that SND.WL2 records the acknowledgment number of
the last segment used to update SND.WND. The check here
prevents using old segments to update the window.<a href="#section-3.10.7.4-2.5.2.2.2.3.2.3" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.4">
<p id="section-3.10.7.4-2.5.2.2.2.4.1">
FIN-WAIT-1 STATE<a href="#section-3.10.7.4-2.5.2.2.2.4.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.4.2.1">
In addition to the processing for the ESTABLISHED state, if
the FIN segment is now acknowledged, then enter FIN-WAIT-2 and continue
processing in that state.<a href="#section-3.10.7.4-2.5.2.2.2.4.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.5">
<p id="section-3.10.7.4-2.5.2.2.2.5.1">
FIN-WAIT-2 STATE<a href="#section-3.10.7.4-2.5.2.2.2.5.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.5.2.1">
In addition to the processing for the ESTABLISHED state, if
the retransmission queue is empty, the user's CLOSE can be
acknowledged ("ok") but do not delete the TCB.<a href="#section-3.10.7.4-2.5.2.2.2.5.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.6">
<p id="section-3.10.7.4-2.5.2.2.2.6.1">
CLOSE-WAIT STATE<a href="#section-3.10.7.4-2.5.2.2.2.6.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.6.2.1">
Do the same processing as for the ESTABLISHED state.<a href="#section-3.10.7.4-2.5.2.2.2.6.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.7">
<p id="section-3.10.7.4-2.5.2.2.2.7.1">
CLOSING STATE<a href="#section-3.10.7.4-2.5.2.2.2.7.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.7.2.1">
In addition to the processing for the ESTABLISHED state, if
the ACK acknowledges our FIN, then enter the TIME-WAIT state;
otherwise, ignore the segment.<a href="#section-3.10.7.4-2.5.2.2.2.7.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.8">
<p id="section-3.10.7.4-2.5.2.2.2.8.1">
LAST-ACK STATE<a href="#section-3.10.7.4-2.5.2.2.2.8.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.8.2.1">
The only thing that can arrive in this state is an
acknowledgment of our FIN. If our FIN is now acknowledged,
delete the TCB, enter the CLOSED state, and return.<a href="#section-3.10.7.4-2.5.2.2.2.8.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.9">
<p id="section-3.10.7.4-2.5.2.2.2.9.1">
TIME-WAIT STATE<a href="#section-3.10.7.4-2.5.2.2.2.9.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.5.2.2.2.9.2.1">
The only thing that can arrive in this state is a
retransmission of the remote FIN. Acknowledge it, and restart
the 2 MSL timeout.<a href="#section-3.10.7.4-2.5.2.2.2.9.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li class="normal ulEmpty" id="section-3.10.7.4-2.6">
<div id="check-urg-bit">
<p id="section-3.10.7.4-2.6.1">
Sixth, check the URG bit:<a href="#section-3.10.7.4-2.6.1" class="pilcrow"></a></p>
</div>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.6.2.1">
ESTABLISHED STATE<a href="#section-3.10.7.4-2.6.2.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.6.2.2">
FIN-WAIT-1 STATE<a href="#section-3.10.7.4-2.6.2.2" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.6.2.3">
<p id="section-3.10.7.4-2.6.2.3.1">
FIN-WAIT-2 STATE<a href="#section-3.10.7.4-2.6.2.3.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.6.2.3.2.1">
If the URG bit is set, RCV.UP &lt;- max(RCV.UP,SEG.UP), and signal
the user that the remote side has urgent data if the urgent
pointer (RCV.UP) is in advance of the data consumed. If the
user has already been signaled (or is still in the "urgent
mode") for this continuous sequence of urgent data, do not
signal the user again.<a href="#section-3.10.7.4-2.6.2.3.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.6.2.4">
CLOSE-WAIT STATE<a href="#section-3.10.7.4-2.6.2.4" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.6.2.5">
CLOSING STATE<a href="#section-3.10.7.4-2.6.2.5" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.6.2.6">
LAST-ACK STATE<a href="#section-3.10.7.4-2.6.2.6" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.6.2.7">
<p id="section-3.10.7.4-2.6.2.7.1">
TIME-WAIT STATE<a href="#section-3.10.7.4-2.6.2.7.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.6.2.7.2.1">
This should not occur since a FIN has been received from the
remote side. Ignore the URG.<a href="#section-3.10.7.4-2.6.2.7.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
</ul>
</li>
<li class="normal ulEmpty" id="section-3.10.7.4-2.7">
<p id="section-3.10.7.4-2.7.1">
Seventh, process the segment text:<a href="#section-3.10.7.4-2.7.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.7.2.1">
ESTABLISHED STATE<a href="#section-3.10.7.4-2.7.2.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.7.2.2">
FIN-WAIT-1 STATE<a href="#section-3.10.7.4-2.7.2.2" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.7.2.3">
<p id="section-3.10.7.4-2.7.2.3.1">
FIN-WAIT-2 STATE<a href="#section-3.10.7.4-2.7.2.3.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.7.2.3.2.1">
Once in the ESTABLISHED state, it is possible to deliver segment
data to user RECEIVE buffers. Data from segments can be moved
into buffers until either the buffer is full or the segment is
empty. If the segment empties and carries a PUSH flag, then
the user is informed, when the buffer is returned, that a PUSH
has been received.<a href="#section-3.10.7.4-2.7.2.3.2.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.7.2.3.2.2">
When the TCP endpoint takes responsibility for delivering the data to the
user, it must also acknowledge the receipt of the data.<a href="#section-3.10.7.4-2.7.2.3.2.2" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.7.2.3.2.3">
Once the TCP endpoint takes responsibility for the data, it advances
RCV.NXT over the data accepted, and adjusts RCV.WND as
appropriate to the current buffer availability. The total of
RCV.NXT and RCV.WND should not be reduced.<a href="#section-3.10.7.4-2.7.2.3.2.3" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.7.2.3.2.4">
A TCP implementation <span class="bcp14">MAY</span> send an ACK segment acknowledging RCV.NXT when a
valid segment arrives that is in the window but not at the
left window edge (MAY-13).<a href="#section-3.10.7.4-2.7.2.3.2.4" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.7.2.3.2.5">
Please note the window management suggestions in <a href="#datacomm" class="xref">Section 3.8</a>.<a href="#section-3.10.7.4-2.7.2.3.2.5" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.7.2.3.2.6">
<p id="section-3.10.7.4-2.7.2.3.2.6.1">
Send an acknowledgment of the form:<a href="#section-3.10.7.4-2.7.2.3.2.6.1" class="pilcrow"></a></p>
<p id="section-3.10.7.4-2.7.2.3.2.6.2">
&lt;SEQ=SND.NXT&gt;&lt;ACK=RCV.NXT&gt;&lt;CTL=ACK&gt;<a href="#section-3.10.7.4-2.7.2.3.2.6.2" class="pilcrow"></a></p>
</li>
<li class="normal" id="section-3.10.7.4-2.7.2.3.2.7">
This acknowledgment should be piggybacked on a segment being
transmitted if possible without incurring undue delay.<a href="#section-3.10.7.4-2.7.2.3.2.7" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.7.2.4">
CLOSE-WAIT STATE<a href="#section-3.10.7.4-2.7.2.4" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.7.2.5">
CLOSING STATE<a href="#section-3.10.7.4-2.7.2.5" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.7.2.6">
LAST-ACK STATE<a href="#section-3.10.7.4-2.7.2.6" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.7.2.7">
<p id="section-3.10.7.4-2.7.2.7.1">
TIME-WAIT STATE<a href="#section-3.10.7.4-2.7.2.7.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.7.2.7.2.1">
This should not occur since a FIN has been received from the
remote side. Ignore the segment text.<a href="#section-3.10.7.4-2.7.2.7.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
</ul>
</li>
<li class="normal ulEmpty" id="section-3.10.7.4-2.8">
<p id="section-3.10.7.4-2.8.1">
Eighth, check the FIN bit:<a href="#section-3.10.7.4-2.8.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.8.2.1">
Do not process the FIN if the state is CLOSED, LISTEN, or SYN-SENT
since the SEG.SEQ cannot be validated; drop the segment and
return.<a href="#section-3.10.7.4-2.8.2.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.8.2.2">
<p id="section-3.10.7.4-2.8.2.2.1">
If the FIN bit is set, signal the user "connection closing" and
return any pending RECEIVEs with same message, advance RCV.NXT
over the FIN, and send an acknowledgment for the FIN. Note that
FIN implies PUSH for any segment text not yet delivered to the
user.<a href="#section-3.10.7.4-2.8.2.2.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.8.2.2.2.1">
SYN-RECEIVED STATE<a href="#section-3.10.7.4-2.8.2.2.2.1" class="pilcrow"></a>
</li>
<li class="normal" id="section-3.10.7.4-2.8.2.2.2.2">
<p id="section-3.10.7.4-2.8.2.2.2.2.1">
ESTABLISHED STATE<a href="#section-3.10.7.4-2.8.2.2.2.2.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.8.2.2.2.2.2.1">
Enter the CLOSE-WAIT state.<a href="#section-3.10.7.4-2.8.2.2.2.2.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.8.2.2.2.3">
<p id="section-3.10.7.4-2.8.2.2.2.3.1">
FIN-WAIT-1 STATE<a href="#section-3.10.7.4-2.8.2.2.2.3.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.8.2.2.2.3.2.1">
If our FIN has been ACKed (perhaps in this segment), then
enter TIME-WAIT, start the time-wait timer, turn off the other
timers; otherwise, enter the CLOSING state.<a href="#section-3.10.7.4-2.8.2.2.2.3.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.8.2.2.2.4">
<p id="section-3.10.7.4-2.8.2.2.2.4.1">
FIN-WAIT-2 STATE<a href="#section-3.10.7.4-2.8.2.2.2.4.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.8.2.2.2.4.2.1">
Enter the TIME-WAIT state. Start the time-wait timer, turn
off the other timers.<a href="#section-3.10.7.4-2.8.2.2.2.4.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.8.2.2.2.5">
<p id="section-3.10.7.4-2.8.2.2.2.5.1">
CLOSE-WAIT STATE<a href="#section-3.10.7.4-2.8.2.2.2.5.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.8.2.2.2.5.2.1">
Remain in the CLOSE-WAIT state.<a href="#section-3.10.7.4-2.8.2.2.2.5.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.8.2.2.2.6">
<p id="section-3.10.7.4-2.8.2.2.2.6.1">
CLOSING STATE<a href="#section-3.10.7.4-2.8.2.2.2.6.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.8.2.2.2.6.2.1">
Remain in the CLOSING state.<a href="#section-3.10.7.4-2.8.2.2.2.6.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.8.2.2.2.7">
<p id="section-3.10.7.4-2.8.2.2.2.7.1">
LAST-ACK STATE<a href="#section-3.10.7.4-2.8.2.2.2.7.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.8.2.2.2.7.2.1">
Remain in the LAST-ACK state.<a href="#section-3.10.7.4-2.8.2.2.2.7.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
<li class="normal" id="section-3.10.7.4-2.8.2.2.2.8">
<p id="section-3.10.7.4-2.8.2.2.2.8.1">
TIME-WAIT STATE<a href="#section-3.10.7.4-2.8.2.2.2.8.1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.7.4-2.8.2.2.2.8.2.1">
Remain in the TIME-WAIT state. Restart the 2 MSL time-wait
timeout.<a href="#section-3.10.7.4-2.8.2.2.2.8.2.1" class="pilcrow"></a>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li class="normal ulEmpty" id="section-3.10.7.4-2.9">
and return.<a href="#section-3.10.7.4-2.9" class="pilcrow"></a>
</li>
</ul>
</section>
</div>
</section>
<section id="section-3.10.8">
<h4 id="name-timeouts">
<a href="#section-3.10.8" class="section-number selfRef">3.10.8. </a><a href="#name-timeouts" class="section-name selfRef">Timeouts</a>
</h4>
<p id="section-3.10.8-1">
USER TIMEOUT<a href="#section-3.10.8-1" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.8-2.1">
For any state if the user timeout expires, flush all queues, signal
the user "error: connection aborted due to user timeout" in general
and for any outstanding calls, delete the TCB, enter the CLOSED
state, and return.<a href="#section-3.10.8-2.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.8-3">
RETRANSMISSION TIMEOUT<a href="#section-3.10.8-3" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.8-4.1">
For any state if the retransmission timeout expires on a segment in
the retransmission queue, send the segment at the front of the
retransmission queue again, reinitialize the retransmission timer,
and return.<a href="#section-3.10.8-4.1" class="pilcrow"></a>
</li>
</ul>
<p id="section-3.10.8-5">
TIME-WAIT TIMEOUT<a href="#section-3.10.8-5" class="pilcrow"></a></p>
<ul class="normal">
<li class="normal" id="section-3.10.8-6.1">
If the time-wait timeout expires on a connection, delete the TCB,
enter the CLOSED state, and return.<a href="#section-3.10.8-6.1" class="pilcrow"></a>
</li>
</ul>
</section>
</section>
</section>
<div id="glossary">
<section id="section-4">
<h2 id="name-glossary">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-glossary" class="section-name selfRef">Glossary</a>
</h2>
<span class="break"></span><dl class="dlNewline" id="section-4-1">
<dt id="section-4-1.1">ACK</dt>
<dd style="margin-left: 4.0em" id="section-4-1.2">
A control bit (acknowledge) occupying no sequence space, which
indicates that the acknowledgment field of this segment
specifies the next sequence number the sender of this segment
is expecting to receive, hence acknowledging receipt of all
previous sequence numbers.<a href="#section-4-1.2" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.3">connection</dt>
<dd style="margin-left: 4.0em" id="section-4-1.4">
A logical communication path identified by a pair of sockets.<a href="#section-4-1.4" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.5">datagram</dt>
<dd style="margin-left: 4.0em" id="section-4-1.6">
A message sent in a packet-switched computer communications
network.<a href="#section-4-1.6" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.7">Destination Address</dt>
<dd style="margin-left: 4.0em" id="section-4-1.8">
The network-layer address of the endpoint intended to receive a segment.<a href="#section-4-1.8" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.9">FIN</dt>
<dd style="margin-left: 4.0em" id="section-4-1.10">
A control bit (finis) occupying one sequence number, which
indicates that the sender will send no more data or control
occupying sequence space.<a href="#section-4-1.10" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.11">flush</dt>
<dd style="margin-left: 4.0em" id="section-4-1.12">
To remove all of the contents (data or segments) from a store (buffer or queue).<a href="#section-4-1.12" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.13">fragment</dt>
<dd style="margin-left: 4.0em" id="section-4-1.14">
A portion of a logical unit of data. In particular, an internet
fragment is a portion of an internet datagram.<a href="#section-4-1.14" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.15">header</dt>
<dd style="margin-left: 4.0em" id="section-4-1.16">
Control information at the beginning of a message, segment,
fragment, packet, or block of data.<a href="#section-4-1.16" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.17">host</dt>
<dd style="margin-left: 4.0em" id="section-4-1.18">
A computer. In particular, a source or destination of messages
from the point of view of the communication network.<a href="#section-4-1.18" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.19">Identification</dt>
<dd style="margin-left: 4.0em" id="section-4-1.20">
An Internet Protocol field. This identifying value assigned
by the sender aids in assembling the fragments of a datagram.<a href="#section-4-1.20" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.21">internet address</dt>
<dd style="margin-left: 4.0em" id="section-4-1.22">
A network-layer address.<a href="#section-4-1.22" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.23">internet datagram</dt>
<dd style="margin-left: 4.0em" id="section-4-1.24">
A unit of data exchanged between internet hosts, together with the internet header
that allows the datagram to be routed from source to destination.<a href="#section-4-1.24" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.25">internet fragment</dt>
<dd style="margin-left: 4.0em" id="section-4-1.26">
A portion of the data of an internet datagram with an internet
header.<a href="#section-4-1.26" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.27">IP</dt>
<dd style="margin-left: 4.0em" id="section-4-1.28">
Internet Protocol. See <span>[<a href="#RFC0791" class="xref">1</a>]</span> and <span>[<a href="#RFC8200" class="xref">13</a>]</span>.<a href="#section-4-1.28" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.29">IRS</dt>
<dd style="margin-left: 4.0em" id="section-4-1.30">
The Initial Receive Sequence number. The first sequence
number used by the sender on a connection.<a href="#section-4-1.30" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.31">ISN</dt>
<dd style="margin-left: 4.0em" id="section-4-1.32">
The Initial Sequence Number. The first sequence number used
on a connection (either ISS or IRS). Selected in a way that is unique within a given period of time and is unpredictable to attackers.<a href="#section-4-1.32" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.33">ISS</dt>
<dd style="margin-left: 4.0em" id="section-4-1.34">
The Initial Send Sequence number. The first sequence number
used by the sender on a connection.<a href="#section-4-1.34" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.35">left sequence</dt>
<dd style="margin-left: 4.0em" id="section-4-1.36">
This is the next sequence number to be acknowledged by the
data-receiving TCP endpoint (or the lowest currently unacknowledged
sequence number) and is sometimes referred to as the left edge
of the send window.<a href="#section-4-1.36" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.37">module</dt>
<dd style="margin-left: 4.0em" id="section-4-1.38">
An implementation, usually in software, of a protocol or other
procedure.<a href="#section-4-1.38" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.39">MSL</dt>
<dd style="margin-left: 4.0em" id="section-4-1.40">
Maximum Segment Lifetime, the time a TCP segment can exist in
the internetwork system. Arbitrarily defined to be 2 minutes.<a href="#section-4-1.40" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.41">octet</dt>
<dd style="margin-left: 4.0em" id="section-4-1.42">
An eight-bit byte.<a href="#section-4-1.42" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.43">Options</dt>
<dd style="margin-left: 4.0em" id="section-4-1.44">
An Option field may contain several options, and each option
may be several octets in length.<a href="#section-4-1.44" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.45">packet</dt>
<dd style="margin-left: 4.0em" id="section-4-1.46">
A package of data with a header that may or may not be
logically complete. More often a physical packaging than a
logical packaging of data.<a href="#section-4-1.46" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.47">port</dt>
<dd style="margin-left: 4.0em" id="section-4-1.48">
The portion of a connection identifier used for demultiplexing connections
at an endpoint.<a href="#section-4-1.48" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.49">process</dt>
<dd style="margin-left: 4.0em" id="section-4-1.50">
A program in execution. A source or destination of data from
the point of view of the TCP endpoint or other host-to-host protocol.<a href="#section-4-1.50" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.51">PUSH</dt>
<dd style="margin-left: 4.0em" id="section-4-1.52">
A control bit occupying no sequence space, indicating that
this segment contains data that must be pushed through to the
receiving user.<a href="#section-4-1.52" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.53">RCV.NXT</dt>
<dd style="margin-left: 4.0em" id="section-4-1.54">
receive next sequence number<a href="#section-4-1.54" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.55">RCV.UP</dt>
<dd style="margin-left: 4.0em" id="section-4-1.56">
receive urgent pointer<a href="#section-4-1.56" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.57">RCV.WND</dt>
<dd style="margin-left: 4.0em" id="section-4-1.58">
receive window<a href="#section-4-1.58" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.59">receive next sequence number</dt>
<dd style="margin-left: 4.0em" id="section-4-1.60">
This is the next sequence number the local TCP endpoint is expecting to
receive.<a href="#section-4-1.60" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.61">receive window</dt>
<dd style="margin-left: 4.0em" id="section-4-1.62">
This represents the sequence numbers the local (receiving) TCP endpoint
is willing to receive. Thus, the local TCP endpoint considers that
segments overlapping the range RCV.NXT to
RCV.NXT + RCV.WND - 1 carry acceptable data or control.
Segments containing sequence numbers entirely outside this
range are considered duplicates or injection attacks and discarded.<a href="#section-4-1.62" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.63">RST</dt>
<dd style="margin-left: 4.0em" id="section-4-1.64">
A control bit (reset), occupying no sequence space, indicating
that the receiver should delete the connection without further
interaction. The receiver can determine, based on the
sequence number and acknowledgment fields of the incoming
segment, whether it should honor the reset command or ignore
it. In no case does receipt of a segment containing RST give
rise to a RST in response.<a href="#section-4-1.64" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.65">SEG.ACK</dt>
<dd style="margin-left: 4.0em" id="section-4-1.66">
segment acknowledgment<a href="#section-4-1.66" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.67">SEG.LEN</dt>
<dd style="margin-left: 4.0em" id="section-4-1.68">
segment length<a href="#section-4-1.68" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.69">SEG.SEQ</dt>
<dd style="margin-left: 4.0em" id="section-4-1.70">
segment sequence<a href="#section-4-1.70" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.71">SEG.UP</dt>
<dd style="margin-left: 4.0em" id="section-4-1.72">
segment urgent pointer field<a href="#section-4-1.72" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.73">SEG.WND</dt>
<dd style="margin-left: 4.0em" id="section-4-1.74">
segment window field<a href="#section-4-1.74" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.75">segment</dt>
<dd style="margin-left: 4.0em" id="section-4-1.76">
A logical unit of data. In particular, a TCP segment is the
unit of data transferred between a pair of TCP modules.<a href="#section-4-1.76" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.77">segment acknowledgment</dt>
<dd style="margin-left: 4.0em" id="section-4-1.78">
The sequence number in the acknowledgment field of the
arriving segment.<a href="#section-4-1.78" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.79">segment length</dt>
<dd style="margin-left: 4.0em" id="section-4-1.80">
The amount of sequence number space occupied by a segment,
including any controls that occupy sequence space.<a href="#section-4-1.80" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.81">segment sequence</dt>
<dd style="margin-left: 4.0em" id="section-4-1.82">
The number in the sequence field of the arriving segment.<a href="#section-4-1.82" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.83">send sequence</dt>
<dd style="margin-left: 4.0em" id="section-4-1.84">
This is the next sequence number the local (sending) TCP endpoint will
use on the connection. It is initially selected from an
initial sequence number curve (ISN) and is incremented for
each octet of data or sequenced control transmitted.<a href="#section-4-1.84" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.85">send window</dt>
<dd style="margin-left: 4.0em" id="section-4-1.86">
This represents the sequence numbers that the remote
(receiving) TCP endpoint is willing to receive. It is the value of the
window field specified in segments from the remote (data-receiving)
TCP endpoint. The range of new sequence numbers that may
be emitted by a TCP implementation lies between SND.NXT and
SND.UNA + SND.WND - 1. (Retransmissions of sequence numbers
between SND.UNA and SND.NXT are expected, of course.)<a href="#section-4-1.86" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.87">SND.NXT</dt>
<dd style="margin-left: 4.0em" id="section-4-1.88">
send sequence<a href="#section-4-1.88" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.89">SND.UNA</dt>
<dd style="margin-left: 4.0em" id="section-4-1.90">
left sequence<a href="#section-4-1.90" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.91">SND.UP</dt>
<dd style="margin-left: 4.0em" id="section-4-1.92">
send urgent pointer<a href="#section-4-1.92" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.93">SND.WL1</dt>
<dd style="margin-left: 4.0em" id="section-4-1.94">
segment sequence number at last window update<a href="#section-4-1.94" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.95">SND.WL2</dt>
<dd style="margin-left: 4.0em" id="section-4-1.96">
segment acknowledgment number at last window update<a href="#section-4-1.96" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.97">SND.WND</dt>
<dd style="margin-left: 4.0em" id="section-4-1.98">
send window<a href="#section-4-1.98" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.99">socket (or socket number, or socket address, or socket identifier)</dt>
<dd style="margin-left: 4.0em" id="section-4-1.100">
An address that specifically includes a port identifier, that
is, the concatenation of an Internet Address with a TCP port.<a href="#section-4-1.100" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.101">Source Address</dt>
<dd style="margin-left: 4.0em" id="section-4-1.102">
The network-layer address of the sending endpoint.<a href="#section-4-1.102" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.103">SYN</dt>
<dd style="margin-left: 4.0em" id="section-4-1.104">
A control bit in the incoming segment, occupying one sequence
number, used at the initiation of a connection to indicate
where the sequence numbering will start.<a href="#section-4-1.104" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.105">TCB</dt>
<dd style="margin-left: 4.0em" id="section-4-1.106">
Transmission control block, the data structure that records
the state of a connection.<a href="#section-4-1.106" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.107">TCP</dt>
<dd style="margin-left: 4.0em" id="section-4-1.108">
Transmission Control Protocol: a host-to-host protocol for
reliable communication in internetwork environments.<a href="#section-4-1.108" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.109">TOS</dt>
<dd style="margin-left: 4.0em" id="section-4-1.110">
Type of Service, an obsoleted IPv4 field. The same header bits currently are used for the Differentiated Services field <span>[<a href="#RFC2474" class="xref">4</a>]</span> containing the Differentiated Services Codepoint (DSCP) value and the 2-bit ECN codepoint <span>[<a href="#RFC3168" class="xref">6</a>]</span>.<a href="#section-4-1.110" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.111">Type of Service</dt>
<dd style="margin-left: 4.0em" id="section-4-1.112">
See "TOS".<a href="#section-4-1.112" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.113">URG</dt>
<dd style="margin-left: 4.0em" id="section-4-1.114">
A control bit (urgent), occupying no sequence space, used to
indicate that the receiving user should be notified to do
urgent processing as long as there is data to be consumed with
sequence numbers less than the value indicated by the urgent
pointer.<a href="#section-4-1.114" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
<dt id="section-4-1.115">urgent pointer</dt>
<dd style="margin-left: 4.0em" id="section-4-1.116">
A control field meaningful only when the URG bit is on. This
field communicates the value of the urgent pointer that
indicates the data octet associated with the sending user's
urgent call.<a href="#section-4-1.116" class="pilcrow"></a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<div id="changes">
<section id="section-5">
<h2 id="name-changes-from-rfc-793">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-changes-from-rfc-793" class="section-name selfRef">Changes from RFC 793</a>
</h2>
<p id="section-5-1">
This document obsoletes RFC 793 as well as RFCs 6093 and 6528, which updated 793. In all cases, only the normative protocol specification and requirements have been incorporated into this document, and some informational text with background and rationale may not have been carried in. The informational content of those documents is still valuable in learning about and understanding TCP, and they are valid Informational references, even though their normative content has been incorporated into this document.<a href="#section-5-1" class="pilcrow"></a></p>
<p id="section-5-2">
The main body of this document was adapted from RFC 793's Section <a href="https://www.rfc-editor.org/rfc/rfc793#section-3" class="relref">3</a>, titled "FUNCTIONAL SPECIFICATION", with an attempt to keep formatting and layout as close as possible.<a href="#section-5-2" class="pilcrow"></a></p>
<p id="section-5-3">
The collection of applicable RFC errata that have been reported and either accepted or held for an update to RFC 793 were incorporated (Errata IDs: 573 <span>[<a href="#Err573" class="xref">73</a>]</span>, 574 <span>[<a href="#Err574" class="xref">74</a>]</span>, 700 <span>[<a href="#Err700" class="xref">75</a>]</span>, 701 <span>[<a href="#Err701" class="xref">76</a>]</span>, 1283 <span>[<a href="#Err1283" class="xref">77</a>]</span>, 1561 <span>[<a href="#Err1561" class="xref">78</a>]</span>, 1562 <span>[<a href="#Err1562" class="xref">79</a>]</span>, 1564 <span>[<a href="#Err1564" class="xref">80</a>]</span>, 1571 <span>[<a href="#Err1571" class="xref">81</a>]</span>, 1572 <span>[<a href="#Err1572" class="xref">82</a>]</span>, 2297 <span>[<a href="#Err2297" class="xref">83</a>]</span>, 2298 <span>[<a href="#Err2298" class="xref">84</a>]</span>, 2748 <span>[<a href="#Err2748" class="xref">85</a>]</span>, 2749 <span>[<a href="#Err2749" class="xref">86</a>]</span>, 2934 <span>[<a href="#Err2934" class="xref">87</a>]</span>, 3213 <span>[<a href="#Err3213" class="xref">88</a>]</span>, 3300 <span>[<a href="#Err3300" class="xref">89</a>]</span>, 3301 <span>[<a href="#Err3301" class="xref">90</a>]</span>, 6222 <span>[<a href="#Err6222" class="xref">91</a>]</span>). Some errata were not applicable due to other changes (Errata IDs: 572 <span>[<a href="#Err572" class="xref">92</a>]</span>, 575 <span>[<a href="#Err575" class="xref">93</a>]</span>, 1565 <span>[<a href="#Err1565" class="xref">94</a>]</span>, 1569 <span>[<a href="#Err1569" class="xref">95</a>]</span>, 2296 <span>[<a href="#Err2296" class="xref">96</a>]</span>, 3305 <span>[<a href="#Err3305" class="xref">97</a>]</span>, 3602 <span>[<a href="#Err3602" class="xref">98</a>]</span>).<a href="#section-5-3" class="pilcrow"></a></p>
<p id="section-5-4">
Changes to the specification of the urgent pointer described in RFCs 1011, 1122, and 6093 were incorporated. See RFC 6093 for detailed discussion of why these changes were necessary.<a href="#section-5-4" class="pilcrow"></a></p>
<p id="section-5-5">
The discussion of the RTO from RFC 793 was updated to refer to RFC 6298. The text on the RTO in RFC 1122 originally replaced the text in RFC 793; however, RFC 2988 should have updated RFC 1122 and has subsequently been obsoleted by RFC 6298.<a href="#section-5-5" class="pilcrow"></a></p>
<p id="section-5-6">
RFC 1011 <span>[<a href="#RFC1011" class="xref">18</a>]</span> contains a number of comments about RFC 793, including some needed changes to the TCP specification. These are expanded in RFC 1122, which contains a collection of other changes and clarifications to RFC 793. The normative items impacting the protocol have been incorporated here, though some historically useful implementation advice and informative discussion from RFC 1122 is not included here. The present document, which is now the TCP specification rather than RFC 793, updates RFC 1011, and the comments noted in RFC 1011 have been incorporated.<a href="#section-5-6" class="pilcrow"></a></p>
<p id="section-5-7">
RFC 1122 contains more than just TCP requirements, so this document can't obsolete RFC 1122 entirely. It is only marked as "updating" RFC 1122; however, it should be understood to effectively obsolete all of the material on TCP found in RFC 1122.<a href="#section-5-7" class="pilcrow"></a></p>
<p id="section-5-8">
The more secure initial sequence number generation algorithm from RFC 6528 was incorporated. See RFC 6528 for discussion of the attacks that this mitigates, as well as advice on selecting PRF algorithms and managing secret key data.<a href="#section-5-8" class="pilcrow"></a></p>
<p id="section-5-9">
A note based on RFC 6429 was added to explicitly clarify that system resource management concerns allow connection resources to be reclaimed. RFC 6429 is obsoleted in the sense that the clarification it describes has been reflected within this base TCP specification.<a href="#section-5-9" class="pilcrow"></a></p>
<p id="section-5-10">
The description of congestion control implementation was added based on the set of documents that are IETF BCP or Standards Track on the topic and the current state of common implementations.<a href="#section-5-10" class="pilcrow"></a></p>
</section>
</div>
<div id="IANA">
<section id="section-6">
<h2 id="name-iana-considerations">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-6-1">
In the "Transmission Control Protocol (TCP HUG) Header Flags" registry, IANA has made several changes as described in this section.<a href="#section-6-1" class="pilcrow"></a></p>
<p id="section-6-2">RFC 3168 originally created this registry but only populated it with the new bits defined in RFC 3168, neglecting the other bits that had previously been described in RFC 793 and other documents. Bit 7 has since also been updated by RFC 8311 <span>[<a href="#RFC8311" class="xref">54</a>]</span>.<a href="#section-6-2" class="pilcrow"></a></p>
<p id="section-6-3">The "Bit" column has been renamed below as the "Bit Offset" column because it references each header flag's offset within the 16-bit aligned view of the TCP header in <a href="#header_format" class="xref">Figure 1</a>. The bits in offsets 0 through 3 are the TCP segment Data Offset field, and not header flags.<a href="#section-6-3" class="pilcrow"></a></p>
<p id="section-6-4">IANA has added a column for "Assignment Notes".<a href="#section-6-4" class="pilcrow"></a></p>
<p id="section-6-5">IANA has assigned values as indicated below.<a href="#section-6-5" class="pilcrow"></a></p>
<span id="name-tcp-header-flags"></span><table class="center" id="table-7">
<caption>
<a href="#table-7" class="selfRef">Table 7</a>:
<a href="#name-tcp-header-flags" class="selfRef">TCP Header Flags</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Bit Offset</th>
<th class="text-left" rowspan="1" colspan="1">Name</th>
<th class="text-left" rowspan="1" colspan="1">Reference</th>
<th class="text-left" rowspan="1" colspan="1">Assignment Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">4</td>
<td class="text-left" rowspan="1" colspan="1">Reserved for future use</td>
<td class="text-left" rowspan="1" colspan="1">draft-networkexception-tcp-hug</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">5</td>
<td class="text-left" rowspan="1" colspan="1">Reserved for future use</td>
<td class="text-left" rowspan="1" colspan="1">draft-networkexception-tcp-hug</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">6</td>
<td class="text-left" rowspan="1" colspan="1">Reserved for future use</td>
<td class="text-left" rowspan="1" colspan="1">draft-networkexception-tcp-hug</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">7</td>
<td class="text-left" rowspan="1" colspan="1">Reserved for future use</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8311</td>
<td class="text-left" rowspan="1" colspan="1">Previously used by Historic RFC 3540 as NS (Nonce Sum).</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">8</td>
<td class="text-left" rowspan="1" colspan="1">CWR (Congestion Window Reduced)</td>
<td class="text-left" rowspan="1" colspan="1">RFC 3168</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">9</td>
<td class="text-left" rowspan="1" colspan="1">ECE (ECN-Echo)</td>
<td class="text-left" rowspan="1" colspan="1">RFC 3168</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">10</td>
<td class="text-left" rowspan="1" colspan="1">Urgent pointer field is significant (URG)</td>
<td class="text-left" rowspan="1" colspan="1">draft-networkexception-tcp-hug</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">11</td>
<td class="text-left" rowspan="1" colspan="1">Acknowledgment field is significant (ACK)</td>
<td class="text-left" rowspan="1" colspan="1">draft-networkexception-tcp-hug</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">12</td>
<td class="text-left" rowspan="1" colspan="1">Push function (PSH)</td>
<td class="text-left" rowspan="1" colspan="1">draft-networkexception-tcp-hug</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">13</td>
<td class="text-left" rowspan="1" colspan="1">Reset the connection (RST)</td>
<td class="text-left" rowspan="1" colspan="1">draft-networkexception-tcp-hug</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">14</td>
<td class="text-left" rowspan="1" colspan="1">Synchronize sequence numbers (SYN)</td>
<td class="text-left" rowspan="1" colspan="1">draft-networkexception-tcp-hug</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">15</td>
<td class="text-left" rowspan="1" colspan="1">No more data from sender (FIN)</td>
<td class="text-left" rowspan="1" colspan="1">draft-networkexception-tcp-hug</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
<p id="section-6-7">The "TCP Header Flags" registry has also been moved to a subregistry under the global "Transmission Control Protocol (TCP HUG) Parameters" registry <span>&lt;<a href="https://www.iana.org/assignments/tcp-parameters/">https://www.iana.org/assignments/tcp-parameters/</a>&gt;</span>.<a href="#section-6-7" class="pilcrow"></a></p>
<p id="section-6-8">The registry's Registration Procedure remains Standards Action, but the Reference has been updated to this document, and the Note has been removed.<a href="#section-6-8" class="pilcrow"></a></p>
</section>
</div>
<div id="Security">
<section id="section-7">
<h2 id="name-security-and-privacy-consid">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-security-and-privacy-consid" class="section-name selfRef">Security and Privacy Considerations</a>
</h2>
<p id="section-7-1">
The TCP design includes only rudimentary security features that improve the robustness and reliability of connections and application data transfer, but there are no built-in cryptographic capabilities to support any form of confidentiality, authentication, or other typical security functions. Non-cryptographic enhancements (e.g., <span>[<a href="#RFC5961" class="xref">9</a>]</span>) have been developed to improve robustness of TCP connections to particular types of attacks, but the applicability and protections of non-cryptographic enhancements are limited (e.g., see <span><a href="https://www.rfc-editor.org/rfc/rfc5961#section-1.1" class="relref">Section 1.1</a> of [<a href="#RFC5961" class="xref">9</a>]</span>).
Applications typically utilize lower-layer (e.g., IPsec) and upper-layer (e.g., TLS) protocols to provide security and privacy for TCP connections and application data carried in TCP. Methods based on TCP Options have been developed as well, to support some security capabilities.<a href="#section-7-1" class="pilcrow"></a></p>
<p id="section-7-2">
In order to fully provide confidentiality, integrity protection, and authentication for TCP connections (including their control flags), IPsec is the only current effective method. For integrity protection and authentication, the TCP Authentication Option (TCP-AO) <span>[<a href="#RFC5925" class="xref">38</a>]</span> is available, with a proposed extension to also provide confidentiality for the segment payload.
Other methods discussed in this section may provide confidentiality or integrity protection for
the payload, but for the TCP header only cover either a subset of the fields (e.g., tcpcrypt <span>[<a href="#RFC8548" class="xref">57</a>]</span>) or none at
all (e.g., TLS). Other security features that have been added to TCP (e.g., ISN
generation, sequence number checks, and others) are only capable of partially
hindering attacks.<a href="#section-7-2" class="pilcrow"></a></p>
<p id="section-7-3">
Applications using long-lived TCP flows have been vulnerable to attacks that exploit the processing of control flags described in earlier TCP specifications <span>[<a href="#RFC4953" class="xref">33</a>]</span>. TCP-MD5 was a commonly implemented TCP Option to support authentication for some of these connections, but had flaws and is now deprecated. TCP-AO provides a capability to protect long-lived TCP connections from attacks and has superior properties to TCP-MD5. It does not provide any privacy for application data or for the TCP headers.<a href="#section-7-3" class="pilcrow"></a></p>
<p id="section-7-4">
The "tcpcrypt" <span>[<a href="#RFC8548" class="xref">57</a>]</span> experimental extension to TCP provides the ability to cryptographically protect connection data. Metadata aspects of the TCP flow are still visible, but the application stream is well protected. Within the TCP header, only the urgent pointer and FIN flag are protected through tcpcrypt.<a href="#section-7-4" class="pilcrow"></a></p>
<p id="section-7-5">
The TCP Roadmap <span>[<a href="#RFC7414" class="xref">49</a>]</span> includes notes about several RFCs related to TCP security. Many of the enhancements provided by these RFCs have been integrated into the present document, including ISN generation, mitigating blind in-window attacks, and improving handling of soft errors and ICMP packets. These are all discussed in greater detail in the referenced RFCs that originally described the changes needed to earlier TCP specifications. Additionally, see RFC 6093 <span>[<a href="#RFC6093" class="xref">39</a>]</span> for discussion of security considerations related to the urgent pointer field, which also discourages new applications from using the urgent pointer.<a href="#section-7-5" class="pilcrow"></a></p>
<p id="section-7-6">
Since TCP is often used for bulk transfer flows, some attacks are possible that abuse the TCP congestion control logic. An example is "ACK-division" attacks. Updates that have been made to the TCP congestion control specifications include mechanisms like Appropriate Byte Counting (ABC) <span>[<a href="#RFC3465" class="xref">29</a>]</span> that act as mitigations to these attacks.<a href="#section-7-6" class="pilcrow"></a></p>
<p id="section-7-7">
Other attacks are focused on exhausting the resources of a TCP server. Examples include SYN flooding <span>[<a href="#RFC4987" class="xref">32</a>]</span> or wasting resources on non-progressing connections <span>[<a href="#RFC6429" class="xref">41</a>]</span>. Operating systems commonly implement mitigations for these attacks. Some common defenses also utilize proxies, stateful firewalls, and other technologies outside the end-host TCP implementation.<a href="#section-7-7" class="pilcrow"></a></p>
<p id="section-7-8">
The concept of a protocol's "wire image" is described in RFC 8546 <span>[<a href="#RFC8546" class="xref">56</a>]</span>, which describes how TCP's cleartext headers expose more metadata to nodes on the path than is strictly required to route the packets to their destination. On-path adversaries may be able to leverage this metadata. Lessons learned in this respect from TCP have been applied in the design of newer transports like QUIC <span>[<a href="#RFC9000" class="xref">60</a>]</span>. Additionally, based partly on experiences with TCP and its extensions, there are considerations that might be applicable for future TCP extensions and other transports that the IETF has documented in RFC 9065 <span>[<a href="#RFC9065" class="xref">61</a>]</span>, along with IAB recommendations in RFC 8558 <span>[<a href="#RFC8558" class="xref">58</a>]</span> and <span>[<a href="#RFC9170" class="xref">67</a>]</span>.<a href="#section-7-8" class="pilcrow"></a></p>
<p id="section-7-9">
There are also methods of "fingerprinting" that can be used to infer the host TCP implementation (operating system) version or platform information. These collect observations of several aspects, such as the options present in segments, the ordering of options, the specific behaviors in the case of various conditions, packet timing, packet sizing, and other aspects of the protocol that are left to be determined by an implementer, and can use those observations to identify information about the host and implementation.<a href="#section-7-9" class="pilcrow"></a></p>
<p id="section-7-10">
Since ICMP message processing also can interact with TCP connections, there is potential for ICMP-based attacks against TCP connections. These are discussed in RFC 5927 <span>[<a href="#RFC5927" class="xref">100</a>]</span>, along with mitigations that have been implemented.<a href="#section-7-10" class="pilcrow"></a></p>
</section>
</div>
<section id="section-8">
<h2 id="name-references">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-8.1">
<h3 id="name-normative-references">
<a href="#section-8.1" class="section-number selfRef">8.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC0791">[1]</dt>
<dd>
<span class="refAuthor">Postel, J.</span>, <span class="refTitle">"Internet Protocol"</span>, <span class="seriesInfo">STD 5</span>, <span class="seriesInfo">RFC 791</span>, <span class="seriesInfo">DOI 10.17487/RFC0791</span>, <time datetime="1981-09" class="refDate">September 1981</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc791">https://www.rfc-editor.org/info/rfc791</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC1191">[2]</dt>
<dd>
<span class="refAuthor">Mogul, J.</span> and <span class="refAuthor">S. Deering</span>, <span class="refTitle">"Path MTU discovery"</span>, <span class="seriesInfo">RFC 1191</span>, <span class="seriesInfo">DOI 10.17487/RFC1191</span>, <time datetime="1990-11" class="refDate">November 1990</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc1191">https://www.rfc-editor.org/info/rfc1191</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2119">[3]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2474">[4]</dt>
<dd>
<span class="refAuthor">Nichols, K.</span>, <span class="refAuthor">Blake, S.</span>, <span class="refAuthor">Baker, F.</span>, and <span class="refAuthor">D. Black</span>, <span class="refTitle">"Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers"</span>, <span class="seriesInfo">RFC 2474</span>, <span class="seriesInfo">DOI 10.17487/RFC2474</span>, <time datetime="1998-12" class="refDate">December 1998</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2474">https://www.rfc-editor.org/info/rfc2474</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2914">[5]</dt>
<dd>
<span class="refAuthor">Floyd, S.</span>, <span class="refTitle">"Congestion Control Principles"</span>, <span class="seriesInfo">BCP 41</span>, <span class="seriesInfo">RFC 2914</span>, <span class="seriesInfo">DOI 10.17487/RFC2914</span>, <time datetime="2000-09" class="refDate">September 2000</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2914">https://www.rfc-editor.org/info/rfc2914</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC3168">[6]</dt>
<dd>
<span class="refAuthor">Ramakrishnan, K.</span>, <span class="refAuthor">Floyd, S.</span>, and <span class="refAuthor">D. Black</span>, <span class="refTitle">"The Addition of Explicit Congestion Notification (ECN) to IP"</span>, <span class="seriesInfo">RFC 3168</span>, <span class="seriesInfo">DOI 10.17487/RFC3168</span>, <time datetime="2001-09" class="refDate">September 2001</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc3168">https://www.rfc-editor.org/info/rfc3168</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5033">[7]</dt>
<dd>
<span class="refAuthor">Floyd, S.</span> and <span class="refAuthor">M. Allman</span>, <span class="refTitle">"Specifying New Congestion Control Algorithms"</span>, <span class="seriesInfo">BCP 133</span>, <span class="seriesInfo">RFC 5033</span>, <span class="seriesInfo">DOI 10.17487/RFC5033</span>, <time datetime="2007-08" class="refDate">August 2007</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5033">https://www.rfc-editor.org/info/rfc5033</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5681">[8]</dt>
<dd>
<span class="refAuthor">Allman, M.</span>, <span class="refAuthor">Paxson, V.</span>, and <span class="refAuthor">E. Blanton</span>, <span class="refTitle">"TCP Congestion Control"</span>, <span class="seriesInfo">RFC 5681</span>, <span class="seriesInfo">DOI 10.17487/RFC5681</span>, <time datetime="2009-09" class="refDate">September 2009</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5681">https://www.rfc-editor.org/info/rfc5681</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5961">[9]</dt>
<dd>
<span class="refAuthor">Ramaiah, A.</span>, <span class="refAuthor">Stewart, R.</span>, and <span class="refAuthor">M. Dalal</span>, <span class="refTitle">"Improving TCP's Robustness to Blind In-Window Attacks"</span>, <span class="seriesInfo">RFC 5961</span>, <span class="seriesInfo">DOI 10.17487/RFC5961</span>, <time datetime="2010-08" class="refDate">August 2010</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5961">https://www.rfc-editor.org/info/rfc5961</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6298">[10]</dt>
<dd>
<span class="refAuthor">Paxson, V.</span>, <span class="refAuthor">Allman, M.</span>, <span class="refAuthor">Chu, J.</span>, and <span class="refAuthor">M. Sargent</span>, <span class="refTitle">"Computing TCP's Retransmission Timer"</span>, <span class="seriesInfo">RFC 6298</span>, <span class="seriesInfo">DOI 10.17487/RFC6298</span>, <time datetime="2011-06" class="refDate">June 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6298">https://www.rfc-editor.org/info/rfc6298</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6633">[11]</dt>
<dd>
<span class="refAuthor">Gont, F.</span>, <span class="refTitle">"Deprecation of ICMP Source Quench Messages"</span>, <span class="seriesInfo">RFC 6633</span>, <span class="seriesInfo">DOI 10.17487/RFC6633</span>, <time datetime="2012-05" class="refDate">May 2012</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6633">https://www.rfc-editor.org/info/rfc6633</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[12]</dt>
<dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8200">[13]</dt>
<dd>
<span class="refAuthor">Deering, S.</span> and <span class="refAuthor">R. Hinden</span>, <span class="refTitle">"Internet Protocol, Version 6 (IPv6) Specification"</span>, <span class="seriesInfo">STD 86</span>, <span class="seriesInfo">RFC 8200</span>, <span class="seriesInfo">DOI 10.17487/RFC8200</span>, <time datetime="2017-07" class="refDate">July 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8200">https://www.rfc-editor.org/info/rfc8200</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8201">[14]</dt>
<dd>
<span class="refAuthor">McCann, J.</span>, <span class="refAuthor">Deering, S.</span>, <span class="refAuthor">Mogul, J.</span>, and <span class="refAuthor">R. Hinden, Ed.</span>, <span class="refTitle">"Path MTU Discovery for IP version 6"</span>, <span class="seriesInfo">STD 87</span>, <span class="seriesInfo">RFC 8201</span>, <span class="seriesInfo">DOI 10.17487/RFC8201</span>, <time datetime="2017-07" class="refDate">July 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8201">https://www.rfc-editor.org/info/rfc8201</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8961">[15]</dt>
<dd>
<span class="refAuthor">Allman, M.</span>, <span class="refTitle">"Requirements for Time-Based Loss Detection"</span>, <span class="seriesInfo">BCP 233</span>, <span class="seriesInfo">RFC 8961</span>, <span class="seriesInfo">DOI 10.17487/RFC8961</span>, <time datetime="2020-11" class="refDate">November 2020</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8961">https://www.rfc-editor.org/info/rfc8961</a>&gt;</span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-8.2">
<h3 id="name-informative-references">
<a href="#section-8.2" class="section-number selfRef">8.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="RFC0793">[16]</dt>
<dd>
<span class="refAuthor">Postel, J.</span>, <span class="refTitle">"Transmission Control Protocol"</span>, <span class="seriesInfo">STD 7</span>, <span class="seriesInfo">RFC 793</span>, <span class="seriesInfo">DOI 10.17487/RFC0793</span>, <time datetime="1981-09" class="refDate">September 1981</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc793">https://www.rfc-editor.org/info/rfc793</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC0896">[17]</dt>
<dd>
<span class="refAuthor">Nagle, J.</span>, <span class="refTitle">"Congestion Control in IP/TCP Internetworks"</span>, <span class="seriesInfo">RFC 896</span>, <span class="seriesInfo">DOI 10.17487/RFC0896</span>, <time datetime="1984-01" class="refDate">January 1984</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc896">https://www.rfc-editor.org/info/rfc896</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC1011">[18]</dt>
<dd>
<span class="refAuthor">Reynolds, J.</span> and <span class="refAuthor">J. Postel</span>, <span class="refTitle">"Official Internet protocols"</span>, <span class="seriesInfo">RFC 1011</span>, <span class="seriesInfo">DOI 10.17487/RFC1011</span>, <time datetime="1987-05" class="refDate">May 1987</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc1011">https://www.rfc-editor.org/info/rfc1011</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC1122">[19]</dt>
<dd>
<span class="refAuthor">Braden, R., Ed.</span>, <span class="refTitle">"Requirements for Internet Hosts - Communication Layers"</span>, <span class="seriesInfo">STD 3</span>, <span class="seriesInfo">RFC 1122</span>, <span class="seriesInfo">DOI 10.17487/RFC1122</span>, <time datetime="1989-10" class="refDate">October 1989</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc1122">https://www.rfc-editor.org/info/rfc1122</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC1349">[20]</dt>
<dd>
<span class="refAuthor">Almquist, P.</span>, <span class="refTitle">"Type of Service in the Internet Protocol Suite"</span>, <span class="seriesInfo">RFC 1349</span>, <span class="seriesInfo">DOI 10.17487/RFC1349</span>, <time datetime="1992-07" class="refDate">July 1992</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc1349">https://www.rfc-editor.org/info/rfc1349</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC1644">[21]</dt>
<dd>
<span class="refAuthor">Braden, R.</span>, <span class="refTitle">"T/TCP -- TCP Extensions for Transactions Functional Specification"</span>, <span class="seriesInfo">RFC 1644</span>, <span class="seriesInfo">DOI 10.17487/RFC1644</span>, <time datetime="1994-07" class="refDate">July 1994</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc1644">https://www.rfc-editor.org/info/rfc1644</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2018">[22]</dt>
<dd>
<span class="refAuthor">Mathis, M.</span>, <span class="refAuthor">Mahdavi, J.</span>, <span class="refAuthor">Floyd, S.</span>, and <span class="refAuthor">A. Romanow</span>, <span class="refTitle">"TCP Selective Acknowledgment Options"</span>, <span class="seriesInfo">RFC 2018</span>, <span class="seriesInfo">DOI 10.17487/RFC2018</span>, <time datetime="1996-10" class="refDate">October 1996</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2018">https://www.rfc-editor.org/info/rfc2018</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2525">[23]</dt>
<dd>
<span class="refAuthor">Paxson, V.</span>, <span class="refAuthor">Allman, M.</span>, <span class="refAuthor">Dawson, S.</span>, <span class="refAuthor">Fenner, W.</span>, <span class="refAuthor">Griner, J.</span>, <span class="refAuthor">Heavens, I.</span>, <span class="refAuthor">Lahey, K.</span>, <span class="refAuthor">Semke, J.</span>, and <span class="refAuthor">B. Volz</span>, <span class="refTitle">"Known TCP Implementation Problems"</span>, <span class="seriesInfo">RFC 2525</span>, <span class="seriesInfo">DOI 10.17487/RFC2525</span>, <time datetime="1999-03" class="refDate">March 1999</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2525">https://www.rfc-editor.org/info/rfc2525</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2675">[24]</dt>
<dd>
<span class="refAuthor">Borman, D.</span>, <span class="refAuthor">Deering, S.</span>, and <span class="refAuthor">R. Hinden</span>, <span class="refTitle">"IPv6 Jumbograms"</span>, <span class="seriesInfo">RFC 2675</span>, <span class="seriesInfo">DOI 10.17487/RFC2675</span>, <time datetime="1999-08" class="refDate">August 1999</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2675">https://www.rfc-editor.org/info/rfc2675</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2873">[25]</dt>
<dd>
<span class="refAuthor">Xiao, X.</span>, <span class="refAuthor">Hannan, A.</span>, <span class="refAuthor">Paxson, V.</span>, and <span class="refAuthor">E. Crabbe</span>, <span class="refTitle">"TCP Processing of the IPv4 Precedence Field"</span>, <span class="seriesInfo">RFC 2873</span>, <span class="seriesInfo">DOI 10.17487/RFC2873</span>, <time datetime="2000-06" class="refDate">June 2000</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2873">https://www.rfc-editor.org/info/rfc2873</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2883">[26]</dt>
<dd>
<span class="refAuthor">Floyd, S.</span>, <span class="refAuthor">Mahdavi, J.</span>, <span class="refAuthor">Mathis, M.</span>, and <span class="refAuthor">M. Podolsky</span>, <span class="refTitle">"An Extension to the Selective Acknowledgement (SACK) Option for TCP"</span>, <span class="seriesInfo">RFC 2883</span>, <span class="seriesInfo">DOI 10.17487/RFC2883</span>, <time datetime="2000-07" class="refDate">July 2000</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2883">https://www.rfc-editor.org/info/rfc2883</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2923">[27]</dt>
<dd>
<span class="refAuthor">Lahey, K.</span>, <span class="refTitle">"TCP Problems with Path MTU Discovery"</span>, <span class="seriesInfo">RFC 2923</span>, <span class="seriesInfo">DOI 10.17487/RFC2923</span>, <time datetime="2000-09" class="refDate">September 2000</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2923">https://www.rfc-editor.org/info/rfc2923</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC3449">[28]</dt>
<dd>
<span class="refAuthor">Balakrishnan, H.</span>, <span class="refAuthor">Padmanabhan, V.</span>, <span class="refAuthor">Fairhurst, G.</span>, and <span class="refAuthor">M. Sooriyabandara</span>, <span class="refTitle">"TCP Performance Implications of Network Path Asymmetry"</span>, <span class="seriesInfo">BCP 69</span>, <span class="seriesInfo">RFC 3449</span>, <span class="seriesInfo">DOI 10.17487/RFC3449</span>, <time datetime="2002-12" class="refDate">December 2002</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc3449">https://www.rfc-editor.org/info/rfc3449</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC3465">[29]</dt>
<dd>
<span class="refAuthor">Allman, M.</span>, <span class="refTitle">"TCP Congestion Control with Appropriate Byte Counting (ABC)"</span>, <span class="seriesInfo">RFC 3465</span>, <span class="seriesInfo">DOI 10.17487/RFC3465</span>, <time datetime="2003-02" class="refDate">February 2003</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc3465">https://www.rfc-editor.org/info/rfc3465</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4727">[30]</dt>
<dd>
<span class="refAuthor">Fenner, B.</span>, <span class="refTitle">"Experimental Values In IPv4, IPv6, ICMPv4, ICMPv6, UDP, and TCP Headers"</span>, <span class="seriesInfo">RFC 4727</span>, <span class="seriesInfo">DOI 10.17487/RFC4727</span>, <time datetime="2006-11" class="refDate">November 2006</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4727">https://www.rfc-editor.org/info/rfc4727</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4821">[31]</dt>
<dd>
<span class="refAuthor">Mathis, M.</span> and <span class="refAuthor">J. Heffner</span>, <span class="refTitle">"Packetization Layer Path MTU Discovery"</span>, <span class="seriesInfo">RFC 4821</span>, <span class="seriesInfo">DOI 10.17487/RFC4821</span>, <time datetime="2007-03" class="refDate">March 2007</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4821">https://www.rfc-editor.org/info/rfc4821</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4987">[32]</dt>
<dd>
<span class="refAuthor">Eddy, W.</span>, <span class="refTitle">"TCP SYN Flooding Attacks and Common Mitigations"</span>, <span class="seriesInfo">RFC 4987</span>, <span class="seriesInfo">DOI 10.17487/RFC4987</span>, <time datetime="2007-08" class="refDate">August 2007</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4987">https://www.rfc-editor.org/info/rfc4987</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4953">[33]</dt>
<dd>
<span class="refAuthor">Touch, J.</span>, <span class="refTitle">"Defending TCP Against Spoofing Attacks"</span>, <span class="seriesInfo">RFC 4953</span>, <span class="seriesInfo">DOI 10.17487/RFC4953</span>, <time datetime="2007-07" class="refDate">July 2007</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4953">https://www.rfc-editor.org/info/rfc4953</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5044">[34]</dt>
<dd>
<span class="refAuthor">Culley, P.</span>, <span class="refAuthor">Elzur, U.</span>, <span class="refAuthor">Recio, R.</span>, <span class="refAuthor">Bailey, S.</span>, and <span class="refAuthor">J. Carrier</span>, <span class="refTitle">"Marker PDU Aligned Framing for TCP Specification"</span>, <span class="seriesInfo">RFC 5044</span>, <span class="seriesInfo">DOI 10.17487/RFC5044</span>, <time datetime="2007-10" class="refDate">October 2007</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5044">https://www.rfc-editor.org/info/rfc5044</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5461">[35]</dt>
<dd>
<span class="refAuthor">Gont, F.</span>, <span class="refTitle">"TCP's Reaction to Soft Errors"</span>, <span class="seriesInfo">RFC 5461</span>, <span class="seriesInfo">DOI 10.17487/RFC5461</span>, <time datetime="2009-02" class="refDate">February 2009</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5461">https://www.rfc-editor.org/info/rfc5461</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5570">[36]</dt>
<dd>
<span class="refAuthor">StJohns, M.</span>, <span class="refAuthor">Atkinson, R.</span>, and <span class="refAuthor">G. Thomas</span>, <span class="refTitle">"Common Architecture Label IPv6 Security Option (CALIPSO)"</span>, <span class="seriesInfo">RFC 5570</span>, <span class="seriesInfo">DOI 10.17487/RFC5570</span>, <time datetime="2009-07" class="refDate">July 2009</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5570">https://www.rfc-editor.org/info/rfc5570</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5795">[37]</dt>
<dd>
<span class="refAuthor">Sandlund, K.</span>, <span class="refAuthor">Pelletier, G.</span>, and <span class="refAuthor">L-E. Jonsson</span>, <span class="refTitle">"The RObust Header Compression (ROHC) Framework"</span>, <span class="seriesInfo">RFC 5795</span>, <span class="seriesInfo">DOI 10.17487/RFC5795</span>, <time datetime="2010-03" class="refDate">March 2010</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5795">https://www.rfc-editor.org/info/rfc5795</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5925">[38]</dt>
<dd>
<span class="refAuthor">Touch, J.</span>, <span class="refAuthor">Mankin, A.</span>, and <span class="refAuthor">R. Bonica</span>, <span class="refTitle">"The TCP Authentication Option"</span>, <span class="seriesInfo">RFC 5925</span>, <span class="seriesInfo">DOI 10.17487/RFC5925</span>, <time datetime="2010-06" class="refDate">June 2010</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5925">https://www.rfc-editor.org/info/rfc5925</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6093">[39]</dt>
<dd>
<span class="refAuthor">Gont, F.</span> and <span class="refAuthor">A. Yourtchenko</span>, <span class="refTitle">"On the Implementation of the TCP Urgent Mechanism"</span>, <span class="seriesInfo">RFC 6093</span>, <span class="seriesInfo">DOI 10.17487/RFC6093</span>, <time datetime="2011-01" class="refDate">January 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6093">https://www.rfc-editor.org/info/rfc6093</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6191">[40]</dt>
<dd>
<span class="refAuthor">Gont, F.</span>, <span class="refTitle">"Reducing the TIME-WAIT State Using TCP Timestamps"</span>, <span class="seriesInfo">BCP 159</span>, <span class="seriesInfo">RFC 6191</span>, <span class="seriesInfo">DOI 10.17487/RFC6191</span>, <time datetime="2011-04" class="refDate">April 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6191">https://www.rfc-editor.org/info/rfc6191</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6429">[41]</dt>
<dd>
<span class="refAuthor">Bashyam, M.</span>, <span class="refAuthor">Jethanandani, M.</span>, and <span class="refAuthor">A. Ramaiah</span>, <span class="refTitle">"TCP Sender Clarification for Persist Condition"</span>, <span class="seriesInfo">RFC 6429</span>, <span class="seriesInfo">DOI 10.17487/RFC6429</span>, <time datetime="2011-12" class="refDate">December 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6429">https://www.rfc-editor.org/info/rfc6429</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6528">[42]</dt>
<dd>
<span class="refAuthor">Gont, F.</span> and <span class="refAuthor">S. Bellovin</span>, <span class="refTitle">"Defending against Sequence Number Attacks"</span>, <span class="seriesInfo">RFC 6528</span>, <span class="seriesInfo">DOI 10.17487/RFC6528</span>, <time datetime="2012-02" class="refDate">February 2012</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6528">https://www.rfc-editor.org/info/rfc6528</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6691">[43]</dt>
<dd>
<span class="refAuthor">Borman, D.</span>, <span class="refTitle">"TCP Options and Maximum Segment Size (MSS)"</span>, <span class="seriesInfo">RFC 6691</span>, <span class="seriesInfo">DOI 10.17487/RFC6691</span>, <time datetime="2012-07" class="refDate">July 2012</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6691">https://www.rfc-editor.org/info/rfc6691</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6864">[44]</dt>
<dd>
<span class="refAuthor">Touch, J.</span>, <span class="refTitle">"Updated Specification of the IPv4 ID Field"</span>, <span class="seriesInfo">RFC 6864</span>, <span class="seriesInfo">DOI 10.17487/RFC6864</span>, <time datetime="2013-02" class="refDate">February 2013</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6864">https://www.rfc-editor.org/info/rfc6864</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6994">[45]</dt>
<dd>
<span class="refAuthor">Touch, J.</span>, <span class="refTitle">"Shared Use of Experimental TCP Options"</span>, <span class="seriesInfo">RFC 6994</span>, <span class="seriesInfo">DOI 10.17487/RFC6994</span>, <time datetime="2013-08" class="refDate">August 2013</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6994">https://www.rfc-editor.org/info/rfc6994</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7094">[46]</dt>
<dd>
<span class="refAuthor">McPherson, D.</span>, <span class="refAuthor">Oran, D.</span>, <span class="refAuthor">Thaler, D.</span>, and <span class="refAuthor">E. Osterweil</span>, <span class="refTitle">"Architectural Considerations of IP Anycast"</span>, <span class="seriesInfo">RFC 7094</span>, <span class="seriesInfo">DOI 10.17487/RFC7094</span>, <time datetime="2014-01" class="refDate">January 2014</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7094">https://www.rfc-editor.org/info/rfc7094</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7323">[47]</dt>
<dd>
<span class="refAuthor">Borman, D.</span>, <span class="refAuthor">Braden, B.</span>, <span class="refAuthor">Jacobson, V.</span>, and <span class="refAuthor">R. Scheffenegger, Ed.</span>, <span class="refTitle">"TCP Extensions for High Performance"</span>, <span class="seriesInfo">RFC 7323</span>, <span class="seriesInfo">DOI 10.17487/RFC7323</span>, <time datetime="2014-09" class="refDate">September 2014</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7323">https://www.rfc-editor.org/info/rfc7323</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7413">[48]</dt>
<dd>
<span class="refAuthor">Cheng, Y.</span>, <span class="refAuthor">Chu, J.</span>, <span class="refAuthor">Radhakrishnan, S.</span>, and <span class="refAuthor">A. Jain</span>, <span class="refTitle">"TCP Fast Open"</span>, <span class="seriesInfo">RFC 7413</span>, <span class="seriesInfo">DOI 10.17487/RFC7413</span>, <time datetime="2014-12" class="refDate">December 2014</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7413">https://www.rfc-editor.org/info/rfc7413</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7414">[49]</dt>
<dd>
<span class="refAuthor">Duke, M.</span>, <span class="refAuthor">Braden, R.</span>, <span class="refAuthor">Eddy, W.</span>, <span class="refAuthor">Blanton, E.</span>, and <span class="refAuthor">A. Zimmermann</span>, <span class="refTitle">"A Roadmap for Transmission Control Protocol (TCP HUG) Specification Documents"</span>, <span class="seriesInfo">RFC 7414</span>, <span class="seriesInfo">DOI 10.17487/RFC7414</span>, <time datetime="2015-02" class="refDate">February 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7414">https://www.rfc-editor.org/info/rfc7414</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7657">[50]</dt>
<dd>
<span class="refAuthor">Black, D., Ed.</span> and <span class="refAuthor">P. Jones</span>, <span class="refTitle">"Differentiated Services (Diffserv) and Real-Time Communication"</span>, <span class="seriesInfo">RFC 7657</span>, <span class="seriesInfo">DOI 10.17487/RFC7657</span>, <time datetime="2015-11" class="refDate">November 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7657">https://www.rfc-editor.org/info/rfc7657</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8087">[51]</dt>
<dd>
<span class="refAuthor">Fairhurst, G.</span> and <span class="refAuthor">M. Welzl</span>, <span class="refTitle">"The Benefits of Using Explicit Congestion Notification (ECN)"</span>, <span class="seriesInfo">RFC 8087</span>, <span class="seriesInfo">DOI 10.17487/RFC8087</span>, <time datetime="2017-03" class="refDate">March 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8087">https://www.rfc-editor.org/info/rfc8087</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8095">[52]</dt>
<dd>
<span class="refAuthor">Fairhurst, G., Ed.</span>, <span class="refAuthor">Trammell, B., Ed.</span>, and <span class="refAuthor">M. Kuehlewind, Ed.</span>, <span class="refTitle">"Services Provided by IETF Transport Protocols and Congestion Control Mechanisms"</span>, <span class="seriesInfo">RFC 8095</span>, <span class="seriesInfo">DOI 10.17487/RFC8095</span>, <time datetime="2017-03" class="refDate">March 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8095">https://www.rfc-editor.org/info/rfc8095</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8303">[53]</dt>
<dd>
<span class="refAuthor">Welzl, M.</span>, <span class="refAuthor">Tuexen, M.</span>, and <span class="refAuthor">N. Khademi</span>, <span class="refTitle">"On the Usage of Transport Features Provided by IETF Transport Protocols"</span>, <span class="seriesInfo">RFC 8303</span>, <span class="seriesInfo">DOI 10.17487/RFC8303</span>, <time datetime="2018-02" class="refDate">February 2018</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8303">https://www.rfc-editor.org/info/rfc8303</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8311">[54]</dt>
<dd>
<span class="refAuthor">Black, D.</span>, <span class="refTitle">"Relaxing Restrictions on Explicit Congestion Notification (ECN) Experimentation"</span>, <span class="seriesInfo">RFC 8311</span>, <span class="seriesInfo">DOI 10.17487/RFC8311</span>, <time datetime="2018-01" class="refDate">January 2018</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8311">https://www.rfc-editor.org/info/rfc8311</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8504">[55]</dt>
<dd>
<span class="refAuthor">Chown, T.</span>, <span class="refAuthor">Loughney, J.</span>, and <span class="refAuthor">T. Winters</span>, <span class="refTitle">"IPv6 Node Requirements"</span>, <span class="seriesInfo">BCP 220</span>, <span class="seriesInfo">RFC 8504</span>, <span class="seriesInfo">DOI 10.17487/RFC8504</span>, <time datetime="2019-01" class="refDate">January 2019</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8504">https://www.rfc-editor.org/info/rfc8504</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8546">[56]</dt>
<dd>
<span class="refAuthor">Trammell, B.</span> and <span class="refAuthor">M. Kuehlewind</span>, <span class="refTitle">"The Wire Image of a Network Protocol"</span>, <span class="seriesInfo">RFC 8546</span>, <span class="seriesInfo">DOI 10.17487/RFC8546</span>, <time datetime="2019-04" class="refDate">April 2019</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8546">https://www.rfc-editor.org/info/rfc8546</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8548">[57]</dt>
<dd>
<span class="refAuthor">Bittau, A.</span>, <span class="refAuthor">Giffin, D.</span>, <span class="refAuthor">Handley, M.</span>, <span class="refAuthor">Mazieres, D.</span>, <span class="refAuthor">Slack, Q.</span>, and <span class="refAuthor">E. Smith</span>, <span class="refTitle">"Cryptographic Protection of TCP Streams (tcpcrypt)"</span>, <span class="seriesInfo">RFC 8548</span>, <span class="seriesInfo">DOI 10.17487/RFC8548</span>, <time datetime="2019-05" class="refDate">May 2019</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8548">https://www.rfc-editor.org/info/rfc8548</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8558">[58]</dt>
<dd>
<span class="refAuthor">Hardie, T., Ed.</span>, <span class="refTitle">"Transport Protocol Path Signals"</span>, <span class="seriesInfo">RFC 8558</span>, <span class="seriesInfo">DOI 10.17487/RFC8558</span>, <time datetime="2019-04" class="refDate">April 2019</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8558">https://www.rfc-editor.org/info/rfc8558</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8684">[59]</dt>
<dd>
<span class="refAuthor">Ford, A.</span>, <span class="refAuthor">Raiciu, C.</span>, <span class="refAuthor">Handley, M.</span>, <span class="refAuthor">Bonaventure, O.</span>, and <span class="refAuthor">C. Paasch</span>, <span class="refTitle">"TCP Extensions for Multipath Operation with Multiple Addresses"</span>, <span class="seriesInfo">RFC 8684</span>, <span class="seriesInfo">DOI 10.17487/RFC8684</span>, <time datetime="2020-03" class="refDate">March 2020</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8684">https://www.rfc-editor.org/info/rfc8684</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9000">[60]</dt>
<dd>
<span class="refAuthor">Iyengar, J., Ed.</span> and <span class="refAuthor">M. Thomson, Ed.</span>, <span class="refTitle">"QUIC: A UDP-Based Multiplexed and Secure Transport"</span>, <span class="seriesInfo">RFC 9000</span>, <span class="seriesInfo">DOI 10.17487/RFC9000</span>, <time datetime="2021-05" class="refDate">May 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9000">https://www.rfc-editor.org/info/rfc9000</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9065">[61]</dt>
<dd>
<span class="refAuthor">Fairhurst, G.</span> and <span class="refAuthor">C. Perkins</spaTransmission Control Protocol (TCP HUG)n>, <span class="refTitle">"Considerations around Transport Header Confidentiality, Network Operations, and the Evolution of Internet Transport Protocols"</span>, <span class="seriesInfo">RFC 9065</span>, <span class="seriesInfo">DOI 10.17487/RFC9065</span>, <time datetime="2021-07" class="refDate">July 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9065">https://www.rfc-editor.org/info/rfc9065</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="TCP-parameters-registry">[62]</dt>
<dd>
<span class="refAuthor">IANA</span>, <span class="refTitle">" Parameters"</span>, <span>&lt;<a href="https://www.iana.org/assignments/tcp-parameters/">https://www.iana.org/assignments/tcp-parameters/</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.gont-tcpm-tcp-seccomp-prec">[63]</dt>
<dd>
<span class="refAuthor">Gont, F.</span>, <span class="refTitle">"Processing of IP Security/Compartment and Precedence Information by TCP"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-gont-tcpm-tcp-seccomp-prec-00</span>, <time datetime="2012-03-29" class="refDate">29 March 2012</time>, <span>&lt;<a href="https://datatracker.ietf.org/doc/html/draft-gont-tcpm-tcp-seccomp-prec-00">https://datatracker.ietf.org/doc/html/draft-gont-tcpm-tcp-seccomp-prec-00</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.gont-tcpm-tcp-seq-validation">[64]</dt>
<dd>
<span class="refAuthor">Gont, F.</span> and <span class="refAuthor">D. Borman</span>, <span class="refTitle">"On the Validation of TCP Sequence Numbers"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-gont-tcpm-tcp-seq-validation-04</span>, <time datetime="2019-03-11" class="refDate">11 March 2019</time>, <span>&lt;<a href="https://datatracker.ietf.org/doc/html/draft-gont-tcpm-tcp-seq-validation-04">https://datatracker.ietf.org/doc/html/draft-gont-tcpm-tcp-seq-validation-04</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-tcpm-tcp-edo">[65]</dt>
<dd>
<span class="refAuthor">Touch, J.</span> and <span class="refAuthor">W. M. Eddy</span>, <span class="refTitle">"TCP Extended Data Offset Option"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-tcpm-tcp-edo-12</span>, <time datetime="2022-04-15" class="refDate">15 April 2022</time>, <span>&lt;<a href="https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-tcp-edo-12">https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-tcp-edo-12</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.mcquistin-augmented-ascii-diagrams">[66]</dt>
<dd>
<span class="refAuthor">McQuistin, S.</span>, <span class="refAuthor">Band, V.</span>, <span class="refAuthor">Jacob, D.</span>, and <span class="refAuthor">C. Perkins</span>, <span class="refTitle">"Describing Protocol Data Units with Augmented Packet Header Diagrams"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-mcquistin-augmented-ascii-diagrams-10</span>, <time datetime="2022-03-07" class="refDate">7 March 2022</time>, <span>&lt;<a href="https://datatracker.ietf.org/doc/html/draft-mcquistin-augmented-ascii-diagrams-10">https://datatracker.ietf.org/doc/html/draft-mcquistin-augmented-ascii-diagrams-10</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9170">[67]</dt>
<dd>
<span class="refAuthor">Thomson, M.</span> and <span class="refAuthor">T. Pauly</span>, <span class="refTitle">"Long-Term Viability of Protocol Extension Mechanisms"</span>, <span class="seriesInfo">RFC 9170</span>, <span class="seriesInfo">DOI 10.17487/RFC9170</span>, <time datetime="2021-12" class="refDate">December 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9170">https://www.rfc-editor.org/info/rfc9170</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.minshall-nagle">[68]</dt>
<dd>
<span class="refAuthor">Minshall, G.</span>, <span class="refTitle">"A Suggested Modification to Nagle's Algorithm"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-minshall-nagle-01</span>, <time datetime="1999-06-18" class="refDate">18 June 1999</time>, <span>&lt;<a href="https://datatracker.ietf.org/doc/html/draft-minshall-nagle-01">https://datatracker.ietf.org/doc/html/draft-minshall-nagle-01</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="DS78">[69]</dt>
<dd>
<span class="refAuthor">Dalal, Y.</span> and <span class="refAuthor">C. Sunshine</span>, <span class="refTitle">"Connection Management in Transport Protocols"</span>, <span class="refContent">Computer Networks, Vol. 2, No. 6, pp. 454-473</span>, <span class="seriesInfo">DOI 10.1016/0376-5075(78)90053-3</span>, <time datetime="1978-12" class="refDate">December 1978</time>, <span>&lt;<a href="https://doi.org/10.1016/0376-5075(78)90053-3">https://doi.org/10.1016/0376-5075(78)90053-3</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="FTY99">[70]</dt>
<dd>
<span class="refAuthor">Faber, T.</span>, <span class="refAuthor">Touch, J.</span>, and <span class="refAuthor">W. Yui</span>, <span class="refTitle">"The TIME-WAIT state in TCP and Its Effect on Busy Servers"</span>, <span class="refContent">Proceedings of IEEE INFOCOM, pp. 1573-1583</span>, <span class="seriesInfo">DOI 10.1109/INFCOM.1999.752180</span>, <time datetime="1999-03" class="refDate">March 1999</time>, <span>&lt;<a href="https://doi.org/10.1109/INFCOM.1999.752180">https://doi.org/10.1109/INFCOM.1999.752180</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="IEN177">[71]</dt>
<dd>
<span class="refAuthor">Postel, J.</span>, <span class="refTitle">"Comments on Action Items from the January Meeting"</span>, <span class="seriesInfo">IEN 177</span>, <time datetime="1981-03" class="refDate">March 1981</time>, <span>&lt;<a href="https://www.rfc-editor.org/ien/ien177.txt">https://www.rfc-editor.org/ien/ien177.txt</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="offload">[72]</dt>
<dd>
<span class="refTitle">"Segmentation Offloads"</span>, <span class="refContent">The Linux Kernel Documentation</span>, <span>&lt;<a href="https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html">https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err573">[73]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 573</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid573">https://www.rfc-editor.org/errata/eid573</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err574">[74]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 574</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid574">https://www.rfc-editor.org/errata/eid574</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err700">[75]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 700</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid700">https://www.rfc-editor.org/errata/eid700</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err701">[76]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 701</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid701">https://www.rfc-editor.org/errata/eid701</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err1283">[77]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 1283</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid1283">https://www.rfc-editor.org/errata/eid1283</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err1561">[78]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 1561</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid1561">https://www.rfc-editor.org/errata/eid1561</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err1562">[79]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 1562</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid1562">https://www.rfc-editor.org/errata/eid1562</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err1564">[80]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 1564</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid1564">https://www.rfc-editor.org/errata/eid1564</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err1571">[81]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 1571</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid1571">https://www.rfc-editor.org/errata/eid1571</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err1572">[82]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 1572</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid1572">https://www.rfc-editor.org/errata/eid1572</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err2297">[83]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 2297</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid2297">https://www.rfc-editor.org/errata/eid2297</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err2298">[84]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 2298</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid2298">https://www.rfc-editor.org/errata/eid2298</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err2748">[85]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 2748</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid2748">https://www.rfc-editor.org/errata/eid2748</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err2749">[86]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 2749</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid2749">https://www.rfc-editor.org/errata/eid2749</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err2934">[87]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 2934</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid2934">https://www.rfc-editor.org/errata/eid2934</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err3213">[88]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 3213</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid3213">https://www.rfc-editor.org/errata/eid3213</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err3300">[89]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 3300</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid3300">https://www.rfc-editor.org/errata/eid3300</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err3301">[90]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 3301</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid3301">https://www.rfc-editor.org/errata/eid3301</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err6222">[91]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 6222</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid6222">https://www.rfc-editor.org/errata/eid6222</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err572">[92]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 572</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid572">https://www.rfc-editor.org/errata/eid572</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err575">[93]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 575</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid575">https://www.rfc-editor.org/errata/eid575</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err1565">[94]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 1565</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid1565">https://www.rfc-editor.org/errata/eid1565</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err1569">[95]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 1569</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid1569">https://www.rfc-editor.org/errata/eid1569</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err2296">[96]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 2296</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid2296">https://www.rfc-editor.org/errata/eid2296</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err3305">[97]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 3305</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid3305">https://www.rfc-editor.org/errata/eid3305</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err3602">[98]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 3602</span>, <span class="refContent">RFC 793</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid3602">https://www.rfc-editor.org/errata/eid3602</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Err4772">[99]</dt>
<dd>
<span class="refAuthor">RFC Errata</span>, <span class="refTitle">Erratum ID 4772</span>, <span class="refContent">RFC 5961</span>, <span>&lt;<a href="https://www.rfc-editor.org/errata/eid4772">https://www.rfc-editor.org/errata/eid4772</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5927">[100]</dt>
<dd>
<span class="refAuthor">Gont, F.</span>, <span class="refTitle">"ICMP Attacks against TCP"</span>, <span class="seriesInfo">RFC 5927</span>, <span class="seriesInfo">DOI 10.17487/RFC5927</span>, <time datetime="2010-07" class="refDate">July 2010</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5927">https://www.rfc-editor.org/info/rfc5927</a>&gt;</span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<section id="appendix-A">
<h2 id="name-other-implementation-notes">
<a href="#appendix-A" class="section-number selfRef">Appendix A. </a><a href="#name-other-implementation-notes" class="section-name selfRef">Other Implementation Notes</a>
</h2>
<p id="appendix-A-1">
This section includes additional notes and references on TCP implementation decisions that are currently not a part of the RFC series or included within the TCP standard. These items can be considered by implementers, but there was not yet a consensus to include them in the standard.<a href="#appendix-A-1" class="pilcrow"></a></p>
<div id="seccomp">
<section id="appendix-A.1">
<h3 id="name-ip-security-compartment-and">
<a href="#appendix-A.1" class="section-number selfRef">A.1. </a><a href="#name-ip-security-compartment-and" class="section-name selfRef">IP Security Compartment and Precedence</a>
</h3>
<p id="appendix-A.1-1">
The IPv4 specification <span>[<a href="#RFC0791" class="xref">1</a>]</span> includes a precedence value in
the (now obsoleted) Type of Service (TOS) field. It was modified in
<span>[<a href="#RFC1349" class="xref">20</a>]</span> and then obsoleted by the definition of
Differentiated Services (Diffserv) <span>[<a href="#RFC2474" class="xref">4</a>]</span>. Setting and
conveying TOS between the network layer, TCP implementation, and applications is obsolete
and is replaced by Diffserv in the current TCP specification.<a href="#appendix-A.1-1" class="pilcrow"></a></p>
<p id="appendix-A.1-2">
RFC 793 required checking the IP security compartment and precedence on
incoming TCP segments for consistency within a connection and with
application requests. Each of these aspects of IP have become outdated,
without specific updates to RFC 793. The issues with precedence were
fixed by <span>[<a href="#RFC2873" class="xref">25</a>]</span>, which is Standards Track, and so this
present TCP specification includes those changes. However, the state of
IP security options that may be used by Multi-Level Secure (MLS) systems is not as apparent in
the IETF currently.<a href="#appendix-A.1-2" class="pilcrow"></a></p>
<p id="appendix-A.1-3">
Resetting connections when incoming packets do not meet expected security
compartment or precedence expectations has been recognized as a possible
attack vector <span>[<a href="#I-D.gont-tcpm-tcp-seccomp-prec" class="xref">63</a>]</span>, and there has
been discussion about amending the TCP specification to prevent connections
from being aborted due to nonmatching IP security compartment and Diffserv
codepoint values.<a href="#appendix-A.1-3" class="pilcrow"></a></p>
<section id="appendix-A.1.1">
<h4 id="name-precedence">
<a href="#appendix-A.1.1" class="section-number selfRef">A.1.1. </a><a href="#name-precedence" class="section-name selfRef">Precedence</a>
</h4>
<p id="appendix-A.1.1-1">
In Diffserv, the former precedence values are treated as Class Selector
codepoints, and methods for compatible treatment are described in the Diffserv
architecture. The RFC TCP specification defined by RFCs 793 and 1122 included logic intending to
have connections use the highest precedence requested by either endpoint
application, and to keep the precedence consistent throughout a connection.
This logic from the obsolete TOS is not applicable to Diffserv and should
not be included in TCP implementations, though changes to Diffserv values
within a connection are discouraged. For discussion of this, see RFC 7657 (Sections <a href="https://www.rfc-editor.org/rfc/rfc7657#section-5.1" class="relref">5.1</a>, <a href="https://www.rfc-editor.org/rfc/rfc7657#section-5.3" class="relref">5.3</a>, and <a href="https://www.rfc-editor.org/rfc/rfc7657#section-6" class="relref">6</a>) <span>[<a href="#RFC7657" class="xref">50</a>]</span>.<a href="#appendix-A.1.1-1" class="pilcrow"></a></p>
<p id="appendix-A.1.1-2">
The obsoleted TOS processing rules in TCP assumed bidirectional (or symmetric) precedence values
used on a connection, but the Diffserv architecture is asymmetric.
Problems with the old TCP logic in this regard were described in <span>[<a href="#RFC2873" class="xref">25</a>]</span>, and the solution described is to ignore IP precedence in
TCP. Since RFC 2873 is a Standards Track document (although not marked as
updating RFC 793), current implementations are expected to be robust in these
conditions. Note that the Diffserv field value used in each direction is a
part of the interface between TCP and the network layer, and values in use can be
indicated both ways between TCP and the application.<a href="#appendix-A.1.1-2" class="pilcrow"></a></p>
</section>
<section id="appendix-A.1.2">
<h4 id="name-mls-systems">
<a href="#appendix-A.1.2" class="section-number selfRef">A.1.2. </a><a href="#name-mls-systems" class="section-name selfRef">MLS Systems</a>
</h4>
<p id="appendix-A.1.2-1">
The IP Security Option (IPSO) and compartment defined in <span>[<a href="#RFC0791" class="xref">1</a>]</span> was refined in RFC 1038, which was later obsoleted by RFC
1108. The Commercial IP Security Option (CIPSO) is defined in FIPS-188 (withdrawn by NIST in 2015) and
is supported by some vendors and operating systems. RFC 1108 is now
Historic, though RFC 791 itself has not been updated to remove the IP
Security Option. For IPv6, a similar option (Common Architecture Label IPv6 Security Option (CALIPSO)) has been defined <span>[<a href="#RFC5570" class="xref">36</a>]</span>. RFC 793 includes logic that includes the IP
security/compartment information in treatment of TCP segments. References to
the IP "security/compartment" in this document may be relevant for
Multi-Level Secure (MLS) system implementers but can be ignored for non-MLS
implementations, consistent with running code on the Internet. See <a href="#seccomp" class="xref">Appendix A.1</a> for further discussion. Note that RFC 5570 describes some
MLS networking scenarios where IPSO, CIPSO, or CALIPSO may be used. In these
special cases, TCP implementers should see Section <a href="https://www.rfc-editor.org/rfc/rfc5570#section-7.3.1" class="relref">7.3.1</a> of RFC 5570 and
follow the guidance in that document.<a href="#appendix-A.1.2-1" class="pilcrow"></a></p>
</section>
</section>
</div>
<div id="seqval">
<section id="appendix-A.2">
<h3 id="name-sequence-number-validation">
<a href="#appendix-A.2" class="section-number selfRef">A.2. </a><a href="#name-sequence-number-validation" class="section-name selfRef">Sequence Number Validation</a>
</h3>
<p id="appendix-A.2-1">
There are cases where the TCP sequence number validation rules can prevent ACK fields from being processed. This can result in connection issues, as described in
<span>[<a href="#I-D.gont-tcpm-tcp-seq-validation" class="xref">64</a>]</span>, which includes descriptions of potential problems in conditions of simultaneous open, self-connects, simultaneous close, and simultaneous window probes. The document also describes potential changes to the TCP specification to mitigate the issue by expanding the acceptable sequence numbers.<a href="#appendix-A.2-1" class="pilcrow"></a></p>
<p id="appendix-A.2-2">
In Internet usage of TCP, these conditions rarely occur. Common operating systems include different alternative mitigations, and the standard has not been updated yet to codify one of them, but implementers should consider the problems described in <span>[<a href="#I-D.gont-tcpm-tcp-seq-validation" class="xref">64</a>]</span>.<a href="#appendix-A.2-2" class="pilcrow"></a></p>
</section>
</div>
<div id="minshall">
<section id="appendix-A.3">
<h3 id="name-nagle-modification">
<a href="#appendix-A.3" class="section-number selfRef">A.3. </a><a href="#name-nagle-modification" class="section-name selfRef">Nagle Modification</a>
</h3>
<p id="appendix-A.3-1">In common operating systems, both the Nagle algorithm and delayed acknowledgments are implemented and enabled by default. TCP is used by many applications that have a request-response style of communication, where the combination of the Nagle algorithm and delayed acknowledgments can result in poor application performance. A modification to the Nagle algorithm is described in <span>[<a href="#I-D.minshall-nagle" class="xref">68</a>]</span> that improves the situation for these applications.<a href="#appendix-A.3-1" class="pilcrow"></a></p>
<p id="appendix-A.3-2">This modification is implemented in some common operating systems and does not impact TCP interoperability. Additionally, many applications simply disable Nagle since this is generally supported by a socket option. The TCP standard has not been updated to include this Nagle modification, but implementers may find it beneficial to consider.<a href="#appendix-A.3-2" class="pilcrow"></a></p>
</section>
</div>
<section id="appendix-A.4">
<h3 id="name-low-watermark-settings">
<a href="#appendix-A.4" class="section-number selfRef">A.4. </a><a href="#name-low-watermark-settings" class="section-name selfRef">Low Watermark Settings</a>
</h3>
<p id="appendix-A.4-1">Some operating system kernel TCP implementations include socket options that allow specifying the number of bytes in the buffer until the socket layer will pass sent data to TCP (SO_SNDLOWAT) or to the application on receiving (SO_RCVLOWAT).<a href="#appendix-A.4-1" class="pilcrow"></a></p>
<p id="appendix-A.4-2">In addition, another socket option (TCP_NOTSENT_LOWAT) can be used to control the amount of unsent bytes in the write queue. This can help a sending TCP application to avoid creating large amounts of buffered data (and corresponding latency). As an example, this may be useful for applications that are multiplexing data from multiple upper-level streams onto a connection, especially when streams may be a mix of interactive/real-time and bulk data transfer.<a href="#appendix-A.4-2" class="pilcrow"></a></p>
</section>
</section>
<div id="reqs">
<section id="appendix-B">
<h2 id="name-tcp-requirement-summary">
<a href="#appendix-B" class="section-number selfRef">Appendix B. </a><a href="#name-tcp-requirement-summary" class="section-name selfRef">TCP Requirement Summary</a>
</h2>
<p id="appendix-B-1">This section is adapted from RFC 1122.<a href="#appendix-B-1" class="pilcrow"></a></p>
<p id="appendix-B-2">Note that there is no requirement related to PLPMTUD in this list, but that PLPMTUD is recommended.<a href="#appendix-B-2" class="pilcrow"></a></p>
<span id="name-tcp-requirements-summary"></span><div id="tcp-req-summary">
<table class="center" id="table-8">
<caption>
<a href="#table-8" class="selfRef">Table 8</a>:
<a href="#name-tcp-requirements-summary" class="selfRef">TCP Requirements Summary</a>
</caption>
<thead>
<tr>
<th class="text-center" rowspan="1" colspan="1">Feature</th>
<th class="text-center" rowspan="1" colspan="1">ReqID</th>
<th class="text-center" rowspan="1" colspan="1">
<span class="bcp14">MUST</span>
</th>
<th class="text-center" rowspan="1" colspan="1">
<span class="bcp14">SHOULD</span>
</th>
<th class="text-center" rowspan="1" colspan="1">
<span class="bcp14">MAY</span>
</th>
<th class="text-center" rowspan="1" colspan="1">
<span class="bcp14">SHOULD NOT</span>
</th>
<th class="text-center" rowspan="1" colspan="1">
<span class="bcp14">MUST NOT</span>
</th>
</tr>
</thead>
<tbody>
<tr>
<th class="text-left" rowspan="1" colspan="7">PUSH flag</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Aggregate or queue un-pushed data</td>
<td class="text-left" rowspan="1" colspan="1">MAY-16</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Sender collapse successive PSH bits</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-27</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">SEND call can specify PUSH</td>
<td class="text-left" rowspan="1" colspan="1">MAY-15</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.5.1.1.1">If cannot: sender buffer indefinitely<a href="#appendix-B-3.2.5.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MUST-60</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.6.1.1.1">If cannot: PSH last segment<a href="#appendix-B-3.2.6.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MUST-61</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Notify receiving ALP<sup>1</sup> of PSH</td>
<td class="text-left" rowspan="1" colspan="1">MAY-17</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Send max size segment when possible</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-28</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="7">Window</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Treat as unsigned number</td>
<td class="text-left" rowspan="1" colspan="1">MUST-1</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Handle as 32-bit number</td>
<td class="text-left" rowspan="1" colspan="1">REC-1</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Shrink window from right</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-14</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.13.1.1.1">Send new data when window shrinks<a href="#appendix-B-3.2.13.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-15</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.14.1.1.1">Retransmit old unacked data within window<a href="#appendix-B-3.2.14.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-16</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.15.1.1.1">Time out conn for data past right edge<a href="#appendix-B-3.2.15.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-17</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Robust against shrinking window</td>
<td class="text-left" rowspan="1" colspan="1">MUST-34</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Receiver's window closed indefinitely</td>
<td class="text-left" rowspan="1" colspan="1">MAY-8</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Use standard probing logic</td>
<td class="text-left" rowspan="1" colspan="1">MUST-35</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Sender probe zero window</td>
<td class="text-left" rowspan="1" colspan="1">MUST-36</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.20.1.1.1">First probe after RTO<a href="#appendix-B-3.2.20.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-29</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.21.1.1.1">Exponential backoff<a href="#appendix-B-3.2.21.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-30</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Allow window stay zero indefinitely</td>
<td class="text-left" rowspan="1" colspan="1">MUST-37</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Retransmit old data beyond SND.UNA+SND.WND</td>
<td class="text-left" rowspan="1" colspan="1">MAY-7</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Process RST and URG even with zero window</td>
<td class="text-left" rowspan="1" colspan="1">MUST-66</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="7">Urgent Data</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Include support for urgent pointer</td>
<td class="text-left" rowspan="1" colspan="1">MUST-30</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Pointer indicates first non-urgent octet</td>
<td class="text-left" rowspan="1" colspan="1">MUST-62</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Arbitrary length urgent data sequence</td>
<td class="text-left" rowspan="1" colspan="1">MUST-31</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Inform ALP<sup>1</sup> asynchronously of urgent data </td>
<td class="text-left" rowspan="1" colspan="1">MUST-32</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">ALP<sup>1</sup> can learn if/how much urgent data Q'd</td>
<td class="text-left" rowspan="1" colspan="1">MUST-33</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">ALP employ the urgent mechanism</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-13</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="7">TCP Options</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Support the mandatory option set</td>
<td class="text-left" rowspan="1" colspan="1">MUST-4</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Receive TCP Option in any segment</td>
<td class="text-left" rowspan="1" colspan="1">MUST-5</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Ignore unsupported options</td>
<td class="text-left" rowspan="1" colspan="1">MUST-6</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Include length for all options except EOL+NOP</td>
<td class="text-left" rowspan="1" colspan="1">MUST-68</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Cope with illegal option length</td>
<td class="text-left" rowspan="1" colspan="1">MUST-7</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Process options regardless of word alignment</td>
<td class="text-left" rowspan="1" colspan="1">MUST-64</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Implement sending &amp; receiving MSS Option</td>
<td class="text-left" rowspan="1" colspan="1">MUST-14</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">IPv4 Send MSS Option unless 536</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-5</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">IPv6 Send MSS Option unless 1220</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-5</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Send MSS Option always</td>
<td class="text-left" rowspan="1" colspan="1">MAY-3</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">IPv4 Send-MSS default is 536</td>
<td class="text-left" rowspan="1" colspan="1">MUST-15</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">IPv6 Send-MSS default is 1220</td>
<td class="text-left" rowspan="1" colspan="1">MUST-15</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Calculate effective send seg size</td>
<td class="text-left" rowspan="1" colspan="1">MUST-16</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">MSS accounts for varying MTU</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-6</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">MSS not sent on non-SYN segments</td>
<td class="text-left" rowspan="1" colspan="1">MUST-65</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">MSS value based on MMS_R</td>
<td class="text-left" rowspan="1" colspan="1">MUST-67</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Pad with zero</td>
<td class="text-left" rowspan="1" colspan="1">MUST-69</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="7">TCP Checksums</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Sender compute checksum</td>
<td class="text-left" rowspan="1" colspan="1">MUST-2</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Receiver check checksum</td>
<td class="text-left" rowspan="1" colspan="1">MUST-3</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="7">ISN Selection</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Include a clock-driven ISN generator component</td>
<td class="text-left" rowspan="1" colspan="1">MUST-8</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Secure ISN generator with a PRF component</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-1</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">PRF computable from outside the host</td>
<td class="text-left" rowspan="1" colspan="1">MUST-9</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="7">Opening Connections</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Support simultaneous open attempts</td>
<td class="text-left" rowspan="1" colspan="1">MUST-10</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">SYN-RECEIVED remembers last state</td>
<td class="text-left" rowspan="1" colspan="1">MUST-11</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Passive OPEN call interfere with others</td>
<td class="text-left" rowspan="1" colspan="1">MUST-41</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Function: simultaneously LISTENs for same port</td>
<td class="text-left" rowspan="1" colspan="1">MUST-42</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Ask IP for src address for SYN if necessary</td>
<td class="text-left" rowspan="1" colspan="1">MUST-44</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.63.1.1.1">Otherwise, use local addr of connection<a href="#appendix-B-3.2.63.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MUST-45</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">OPEN to broadcast/multicast IP address</td>
<td class="text-left" rowspan="1" colspan="1">MUST-46</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Silently discard seg to bcast/mcast addr</td>
<td class="text-left" rowspan="1" colspan="1">MUST-57</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="7">Closing Connections</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">RST can contain data</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-2</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Inform application of aborted conn</td>
<td class="text-left" rowspan="1" colspan="1">MUST-12</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Half-duplex close connections</td>
<td class="text-left" rowspan="1" colspan="1">MAY-1</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.70.1.1.1">Send RST to indicate data lost<a href="#appendix-B-3.2.70.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-3</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">In TIME-WAIT state for 2MSL seconds</td>
<td class="text-left" rowspan="1" colspan="1">MUST-13</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.72.1.1.1">Accept SYN from TIME-WAIT state<a href="#appendix-B-3.2.72.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MAY-2</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.73.1.1.1">Use Timestamps to reduce TIME-WAIT<a href="#appendix-B-3.2.73.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-4</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="7">Retransmissions</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Implement exponential backoff, slow start, and congestion avoidance</td>
<td class="text-left" rowspan="1" colspan="1">MUST-19</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Retransmit with same IP identity</td>
<td class="text-left" rowspan="1" colspan="1">MAY-4</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Karn's algorithm</td>
<td class="text-left" rowspan="1" colspan="1">MUST-18</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="7">Generating ACKs</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Aggregate whenever possible</td>
<td class="text-left" rowspan="1" colspan="1">MUST-58</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Queue out-of-order segments</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-31</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Process all Q'd before send ACK</td>
<td class="text-left" rowspan="1" colspan="1">MUST-59</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Send ACK for out-of-order segment</td>
<td class="text-left" rowspan="1" colspan="1">MAY-13</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Delayed ACKs</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-18</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.84.1.1.1">Delay &lt; 0.5 seconds<a href="#appendix-B-3.2.84.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MUST-40</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.85.1.1.1">Every 2nd full-sized segment or 2*RMSS ACK'd<a href="#appendix-B-3.2.85.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-19</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Receiver SWS-Avoidance Algorithm</td>
<td class="text-left" rowspan="1" colspan="1">MUST-39</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="7">Sending Data</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Configurable TTL</td>
<td class="text-left" rowspan="1" colspan="1">MUST-49</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Sender SWS-Avoidance Algorithm </td>
<td class="text-left" rowspan="1" colspan="1">MUST-38</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Nagle algorithm</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-7</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.91.1.1.1">Application can disable Nagle algorithm<a href="#appendix-B-3.2.91.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MUST-17</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="7">Connection Failures</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Negative advice to IP on R1 retransmissions</td>
<td class="text-left" rowspan="1" colspan="1">MUST-20</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Close connection on R2 retransmissions</td>
<td class="text-left" rowspan="1" colspan="1">MUST-20</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">ALP<sup>1</sup> can set R2</td>
<td class="text-left" rowspan="1" colspan="1">MUST-21</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Inform ALP of R1&lt;=retxs&lt;R2 </td>
<td class="text-left" rowspan="1" colspan="1">SHLD-9</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Recommended value for R1</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-10</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Recommended value for R2</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-11</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Same mechanism for SYNs</td>
<td class="text-left" rowspan="1" colspan="1">MUST-22</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.100.1.1.1">R2 at least 3 minutes for SYN<a href="#appendix-B-3.2.100.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MUST-23</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="7">Send Keep-alive Packets</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Send Keep-alive Packets:</td>
<td class="text-left" rowspan="1" colspan="1">MAY-5</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.103.1.1.1">Application can request<a href="#appendix-B-3.2.103.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MUST-24</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.104.1.1.1">Default is "off"<a href="#appendix-B-3.2.104.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MUST-25</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.105.1.1.1">Only send if idle for interval<a href="#appendix-B-3.2.105.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MUST-26</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.106.1.1.1">Interval configurable<a href="#appendix-B-3.2.106.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MUST-27</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.107.1.1.1">Default at least 2 hrs.<a href="#appendix-B-3.2.107.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MUST-28</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.108.1.1.1">Tolerant of lost ACKs<a href="#appendix-B-3.2.108.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MUST-29</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.109.1.1.1">Send with no data<a href="#appendix-B-3.2.109.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-12</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.110.1.1.1">Configurable to send garbage octet<a href="#appendix-B-3.2.110.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MAY-6</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="7">IP Options</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Ignore options TCP doesn't understand</td>
<td class="text-left" rowspan="1" colspan="1">MUST-50</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Timestamp support</td>
<td class="text-left" rowspan="1" colspan="1">MAY-10</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Record Route support</td>
<td class="text-left" rowspan="1" colspan="1">MAY-11</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Source Route:</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.116.1.1.1">ALP<sup>1</sup> can specify<a href="#appendix-B-3.2.116.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MUST-51</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li style="margin-left: 1.0em;" class="normal text-left" id="appendix-B-3.2.117.1.1.1">Overrides src route in datagram<a href="#appendix-B-3.2.117.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MUST-52</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.118.1.1.1">Build return route from src route<a href="#appendix-B-3.2.118.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MUST-53</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.119.1.1.1">Later src route overrides<a href="#appendix-B-3.2.119.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-24</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="7">Receiving ICMP Messages from IP</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Receiving ICMP messages from IP</td>
<td class="text-left" rowspan="1" colspan="1">MUST-54</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.122.1.1.1">Dest Unreach (0,1,5) =&gt; inform ALP<a href="#appendix-B-3.2.122.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-25</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.123.1.1.1">Abort on Dest Unreach (0,1,5)<a href="#appendix-B-3.2.123.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MUST-56</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.124.1.1.1">Dest Unreach (2-4) =&gt; abort conn<a href="#appendix-B-3.2.124.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-26</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.125.1.1.1">Source Quench =&gt; silent discard<a href="#appendix-B-3.2.125.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MUST-55</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.126.1.1.1">Abort on Time Exceeded<a href="#appendix-B-3.2.126.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MUST-56</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.127.1.1.1">Abort on Param Problem<a href="#appendix-B-3.2.127.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">MUST-56</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="7">Address Validation</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Reject OPEN call to invalid IP address</td>
<td class="text-left" rowspan="1" colspan="1">MUST-46</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Reject SYN from invalid IP address</td>
<td class="text-left" rowspan="1" colspan="1">MUST-63</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Silently discard SYN to bcast/mcast addr</td>
<td class="text-left" rowspan="1" colspan="1">MUST-57</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="7">TCP/ALP Interface Services</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Error Report mechanism</td>
<td class="text-left" rowspan="1" colspan="1">MUST-47</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">ALP can disable Error Report Routine</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-20</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">ALP can specify Diffserv field for sending</td>
<td class="text-left" rowspan="1" colspan="1">MUST-48</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="appendix-B-3.2.136.1.1.1">Passed unchanged to IP<a href="#appendix-B-3.2.136.1.1.1" class="pilcrow"></a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-22</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">ALP can change Diffserv field during connection</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-21</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">ALP generally changing Diffserv during conn.</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-23</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Pass received Diffserv field up to ALP</td>
<td class="text-left" rowspan="1" colspan="1">MAY-9</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">FLUSH call</td>
<td class="text-left" rowspan="1" colspan="1">MAY-14</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Optional local IP addr param in OPEN</td>
<td class="text-left" rowspan="1" colspan="1">MUST-43</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="7">RFC 5961 Support</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Implement data injection protection</td>
<td class="text-left" rowspan="1" colspan="1">MAY-12</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="7">Explicit Congestion Notification</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Support ECN</td>
<td class="text-left" rowspan="1" colspan="1">SHLD-8</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="7">Alternative Congestion Control</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Implement alternative conformant algorithm(s)</td>
<td class="text-left" rowspan="1" colspan="1">MAY-18</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-left" rowspan="1" colspan="1"> </td>
<td class="text-left" rowspan="1" colspan="1"> </td>
</tr>
</tbody>
</table>
</div>
<p id="appendix-B-4">
FOOTNOTES:
(1) "ALP" means Application-Layer Program.<a href="#appendix-B-4" class="pilcrow"></a></p>
</section>
</div>
<section id="appendix-C">
<h2 id="name-acknowledgments">
<a href="#name-acknowledgments" class="section-name selfRef">Acknowledgments</a>
</h2>
<p id="appendix-C-1">
This document is largely a revision of RFC 793, of which <span class="contact-name">Jon Postel</span> was the editor. Due to his excellent work, it was able to last for three decades before we felt the need to revise it.<a href="#appendix-C-1" class="pilcrow"></a></p>
<p id="appendix-C-2">
<span class="contact-name">Andre Oppermann</span> was a contributor and helped to edit the first revision of this document.<a href="#appendix-C-2" class="pilcrow"></a></p>
<p id="appendix-C-3">
We are thankful for the assistance of the IETF TCPM working group chairs over the course of work on this document:<a href="#appendix-C-3" class="pilcrow"></a></p>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Michael Scharf</span></div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Yoshifumi Nishida</span></div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Pasi Sarolahti</span></div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Michael Tüxen</span></div>
</address>
<p id="appendix-C-4">
During the discussions of this work on the TCPM mailing list, in
working group meetings, and via area reviews, helpful comments,
critiques, and reviews were received from (listed alphabetically
by last name): <span class="contact-name">Praveen Balasubramanian</span>, <span class="contact-name">David Borman</span>, <span class="contact-name">Mohamed Boucadair</span>, <span class="contact-name">Bob Briscoe</span>, <span class="contact-name">Neal Cardwell</span>, <span class="contact-name">Yuchung Cheng</span>, <span class="contact-name">Martin Duke</span>,
<span class="contact-name">Francis Dupont</span>, <span class="contact-name">Ted Faber</span>, <span class="contact-name">Gorry Fairhurst</span>, <span class="contact-name">Fernando Gont</span>, <span class="contact-name">Rodney Grimes</span>, <span class="contact-name">Yi Huang</span>, <span class="contact-name">Rahul Jadhav</span>, <span class="contact-name">Markku Kojo</span>, <span class="contact-name">Mike Kosek</span>, <span class="contact-name">Juhamatti Kuusisaari</span>, <span class="contact-name">Kevin Lahey</span>, <span class="contact-name">Kevin Mason</span>, <span class="contact-name">Matt Mathis</span>, <span class="contact-name">Stephen McQuistin</span>, <span class="contact-name">Jonathan Morton</span>, <span class="contact-name">Matt Olson</span>, <span class="contact-name">Tommy Pauly</span>, <span class="contact-name">Tom Petch</span>,
<span class="contact-name">Hagen Paul Pfeifer</span>, <span class="contact-name">Kyle Rose</span>, <span class="contact-name">Anthony Sabatini</span>, <span class="contact-name">Michael Scharf</span>,
<span class="contact-name">Greg Skinner</span>, <span class="contact-name">Joe Touch</span>, <span class="contact-name">Michael Tüxen</span>, <span class="contact-name">Reji Varghese</span>, <span class="contact-name">Bernie Volz</span>, <span class="contact-name">Tim Wicinski</span>, <span class="contact-name">Lloyd Wood</span>, and <span class="contact-name">Alex Zimmermann</span>.<a href="#appendix-C-4" class="pilcrow"></a></p>
<p id="appendix-C-5">
<span class="contact-name">Joe Touch</span> provided additional help in clarifying the description of segment size parameters and PMTUD/PLPMTUD recommendations. Markku Kojo helped put together the text in the section on TCP Congestion Control.<a href="#appendix-C-5" class="pilcrow"></a></p>
<p id="appendix-C-6">
This document includes content from errata that were reported by (listed chronologically): <span class="contact-name">Yin Shuming</span>, <span class="contact-name">Bob Braden</span>, <span class="contact-name">Morris M. Keesan</span>, <span class="contact-name">Pei-chun Cheng</span>, <span class="contact-name">Constantin Hagemeier</span>, <span class="contact-name">Vishwas Manral</span>, <span class="contact-name">Mykyta Yevstifeyev</span>, <span class="contact-name">EungJun Yi</span>, <span class="contact-name">Botong Huang</span>, <span class="contact-name">Charles Deng</span>, <span class="contact-name">Merlin Buge</span>.<a href="#appendix-C-6" class="pilcrow"></a></p>
</section>
<div id="authors-addresses">
<section id="appendix-D">
<h2 id="name-authors-address">
<a href="#name-authors-address" class="section-name selfRef">Author's Address</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Wesley M. Eddy (<span class="role">editor</span>)</span></div>
<div dir="auto" class="left"><span class="org">MTI Systems</span></div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:wes@mti-systems.com" class="email">wes@mti-systems.com</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
toc.classList.remove("active");
});
</script>
<script>(function(){var js = "window['__CF$cv$params']={r:'7b313cf9d9c82c2d',m:'beoM9nNpFU38bSWHSlxsLwlMqIXa9lcsLCvaloSCtt8-1680691911-0-AbKQrHFD3UM+QUydlVT1t2GwzbijIgZcBXrkbg78r55cS3K+E3ajqHHq0DcxGbcduANcUyaALyi6fDbiepeD00GFke2xVgI/+o+qHIXMKMapskwTPh+wah0Tdzupas/xnlDae3Kr7q8PwVrsK26XlX8=',s:[0xbee0f0ef3c,0x1b4f6aeb81],u:'/cdn-cgi/challenge-platform/h/g'};var now=Date.now()/1000,offset=14400,ts=''+(Math.floor(now)-Math.floor(now%offset)),_cpo=document.createElement('script');_cpo.nonce='',_cpo.src='/cdn-cgi/challenge-platform/h/g/scripts/alpha/invisible.js?ts='+ts,document.getElementsByTagName('head')[0].appendChild(_cpo);";var _0xh = document.createElement('iframe');_0xh.height = 1;_0xh.width = 1;_0xh.style.position = 'absolute';_0xh.style.top = 0;_0xh.style.left = 0;_0xh.style.border = 'none';_0xh.style.visibility = 'hidden';document.body.appendChild(_0xh);function handler() {var _0xi = _0xh.contentDocument || _0xh.contentWindow.document;if (_0xi) {var _0xj = _0xi.createElement('script');_0xj.nonce = '';_0xj.innerHTML = js;_0xi.getElementsByTagName('head')[0].appendChild(_0xj);}}if (document.readyState !== 'loading') {handler();} else if (window.addEventListener) {document.addEventListener('DOMContentLoaded', handler);} else {var prev = document.onreadystatechange || function () {};document.onreadystatechange = function (e) {prev(e);if (document.readyState !== 'loading') {document.onreadystatechange = prev;handler();}};}})();</script></body>
</html>